Ginkgo  Generated from pipelines/2017069469 branch based on develop. Ginkgo version 1.11.0
A numerical linear algebra library targeting many-core architectures
vector.hpp
1 // SPDX-FileCopyrightText: 2017 - 2025 The Ginkgo authors
2 //
3 // SPDX-License-Identifier: BSD-3-Clause
4 
5 #ifndef GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
6 #define GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
7 
8 
9 #include <ginkgo/config.hpp>
10 
11 
12 #if GINKGO_BUILD_MPI
13 
14 
15 #include <ginkgo/core/base/dense_cache.hpp>
16 #include <ginkgo/core/base/lin_op.hpp>
17 #include <ginkgo/core/base/mpi.hpp>
18 #include <ginkgo/core/distributed/base.hpp>
19 #include <ginkgo/core/matrix/dense.hpp>
20 
21 
22 namespace gko {
23 namespace experimental {
24 namespace distributed {
25 namespace detail {
26 
27 
28 template <typename ValueType>
29 class VectorCache;
30 
31 
32 } // namespace detail
33 
34 
35 template <typename LocalIndexType, typename GlobalIndexType>
36 class Partition;
37 
38 
66 template <typename ValueType = double>
67 class Vector
68  : public EnableLinOp<Vector<ValueType>>,
69  public ConvertibleTo<Vector<next_precision<ValueType>>>,
70 #if GINKGO_ENABLE_HALF || GINKGO_ENABLE_BFLOAT16
71  public ConvertibleTo<Vector<next_precision<ValueType, 2>>>,
72 #endif
73 #if GINKGO_ENABLE_HALF && GINKGO_ENABLE_BFLOAT16
74  public ConvertibleTo<Vector<next_precision<ValueType, 3>>>,
75 #endif
76  public EnableAbsoluteComputation<remove_complex<Vector<ValueType>>>,
77  public DistributedBase {
78  friend class EnablePolymorphicObject<Vector, LinOp>;
79  friend class Vector<to_complex<ValueType>>;
80  friend class Vector<remove_complex<ValueType>>;
81  friend class Vector<previous_precision<ValueType>>;
82  friend class detail::VectorCache<ValueType>;
83 
84 public:
87  using ConvertibleTo<Vector<next_precision<ValueType>>>::convert_to;
88  using ConvertibleTo<Vector<next_precision<ValueType>>>::move_to;
89 
90  using value_type = ValueType;
91  using absolute_type = remove_complex<Vector>;
92  using real_type = absolute_type;
93  using complex_type = Vector<to_complex<value_type>>;
94  using local_vector_type = gko::matrix::Dense<value_type>;
95 
102  static std::unique_ptr<Vector> create_with_config_of(
103  ptr_param<const Vector> other);
104 
105 
117  static std::unique_ptr<Vector> create_with_type_of(
118  ptr_param<const Vector> other, std::shared_ptr<const Executor> exec);
119 
132  static std::unique_ptr<Vector> create_with_type_of(
133  ptr_param<const Vector> other, std::shared_ptr<const Executor> exec,
134  const dim<2>& global_size, const dim<2>& local_size, size_type stride);
135 
150  void read_distributed(const device_matrix_data<ValueType, int64>& data,
151  ptr_param<const Partition<int64, int64>> partition);
152 
153  void read_distributed(const device_matrix_data<ValueType, int64>& data,
154  ptr_param<const Partition<int32, int64>> partition);
155 
156  void read_distributed(const device_matrix_data<ValueType, int32>& data,
157  ptr_param<const Partition<int32, int32>> partition);
158 
168  void read_distributed(const matrix_data<ValueType, int64>& data,
169  ptr_param<const Partition<int64, int64>> partition);
170 
171  void read_distributed(const matrix_data<ValueType, int64>& data,
172  ptr_param<const Partition<int32, int64>> partition);
173 
174  void read_distributed(const matrix_data<ValueType, int32>& data,
175  ptr_param<const Partition<int32, int32>> partition);
176 
177  void convert_to(Vector<next_precision<ValueType>>* result) const override;
178 
179  void move_to(Vector<next_precision<ValueType>>* result) override;
180 
181 #if GINKGO_ENABLE_HALF || GINKGO_ENABLE_BFLOAT16
182  friend class Vector<previous_precision<ValueType, 2>>;
183  using ConvertibleTo<Vector<next_precision<ValueType, 2>>>::convert_to;
184  using ConvertibleTo<Vector<next_precision<ValueType, 2>>>::move_to;
185 
186  void convert_to(
187  Vector<next_precision<ValueType, 2>>* result) const override;
188 
189  void move_to(Vector<next_precision<ValueType, 2>>* result) override;
190 #endif
191 
192 #if GINKGO_ENABLE_HALF && GINKGO_ENABLE_BFLOAT16
193  friend class Vector<previous_precision<ValueType, 3>>;
194  using ConvertibleTo<Vector<next_precision<ValueType, 3>>>::convert_to;
195  using ConvertibleTo<Vector<next_precision<ValueType, 3>>>::move_to;
196 
197  void convert_to(
198  Vector<next_precision<ValueType, 3>>* result) const override;
199 
200  void move_to(Vector<next_precision<ValueType, 3>>* result) override;
201 #endif
202 
203  std::unique_ptr<absolute_type> compute_absolute() const override;
204 
205  void compute_absolute_inplace() override;
206 
211  std::unique_ptr<complex_type> make_complex() const;
212 
218  void make_complex(ptr_param<complex_type> result) const;
219 
224  std::unique_ptr<real_type> get_real() const;
225 
229  void get_real(ptr_param<real_type> result) const;
230 
235  std::unique_ptr<real_type> get_imag() const;
236 
241  void get_imag(ptr_param<real_type> result) const;
242 
248  void fill(ValueType value);
249 
259  void scale(ptr_param<const LinOp> alpha);
260 
270  void inv_scale(ptr_param<const LinOp> alpha);
271 
281  void add_scaled(ptr_param<const LinOp> alpha, ptr_param<const LinOp> b);
282 
291  void sub_scaled(ptr_param<const LinOp> alpha, ptr_param<const LinOp> b);
292 
302  void compute_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result) const;
303 
316  void compute_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result,
317  array<char>& tmp) const;
318 
328  void compute_conj_dot(ptr_param<const LinOp> b,
329  ptr_param<LinOp> result) const;
330 
343  void compute_conj_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result,
344  array<char>& tmp) const;
345 
354  void compute_squared_norm2(ptr_param<LinOp> result) const;
355 
367  void compute_squared_norm2(ptr_param<LinOp> result, array<char>& tmp) const;
368 
377  void compute_norm2(ptr_param<LinOp> result) const;
378 
390  void compute_norm2(ptr_param<LinOp> result, array<char>& tmp) const;
391 
399  void compute_norm1(ptr_param<LinOp> result) const;
400 
412  void compute_norm1(ptr_param<LinOp> result, array<char>& tmp) const;
413 
422  void compute_mean(ptr_param<LinOp> result) const;
423 
435  void compute_mean(ptr_param<LinOp> result, array<char>& tmp) const;
436 
447  value_type& at_local(size_type row, size_type col) noexcept;
448 
452  value_type at_local(size_type row, size_type col) const noexcept;
453 
468  ValueType& at_local(size_type idx) noexcept;
469 
473  ValueType at_local(size_type idx) const noexcept;
474 
480  value_type* get_local_values();
481 
489  const value_type* get_const_local_values() const;
490 
496  const local_vector_type* get_local_vector() const;
497 
505  std::unique_ptr<const real_type> create_real_view() const;
506 
510  std::unique_ptr<real_type> create_real_view();
511 
521  std::unique_ptr<Vector> create_submatrix(local_span rows,
522  local_span columns,
523  dim<2> global_size);
524 
525  size_type get_stride() const noexcept { return local_.get_stride(); }
526 
538  static std::unique_ptr<Vector> create(std::shared_ptr<const Executor> exec,
539  mpi::communicator comm,
540  dim<2> global_size, dim<2> local_size,
541  size_type stride);
542 
554  static std::unique_ptr<Vector> create(std::shared_ptr<const Executor> exec,
555  mpi::communicator comm,
556  dim<2> global_size = {},
557  dim<2> local_size = {});
558 
576  static std::unique_ptr<Vector> create(
577  std::shared_ptr<const Executor> exec, mpi::communicator comm,
578  dim<2> global_size, std::unique_ptr<local_vector_type> local_vector);
579 
598  static std::unique_ptr<Vector> create(
599  std::shared_ptr<const Executor> exec, mpi::communicator comm,
600  std::unique_ptr<local_vector_type> local_vector);
601 
614  static std::unique_ptr<const Vector> create_const(
615  std::shared_ptr<const Executor> exec, mpi::communicator comm,
616  dim<2> global_size,
617  std::unique_ptr<const local_vector_type> local_vector);
618 
631  static std::unique_ptr<const Vector> create_const(
632  std::shared_ptr<const Executor> exec, mpi::communicator comm,
633  std::unique_ptr<const local_vector_type> local_vector);
634 
635 protected:
636  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
637  dim<2> global_size, dim<2> local_size, size_type stride);
638 
639  explicit Vector(std::shared_ptr<const Executor> exec,
640  mpi::communicator comm, dim<2> global_size = {},
641  dim<2> local_size = {});
642 
643  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
644  dim<2> global_size, std::unique_ptr<local_vector_type> local_vector);
645 
646  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
647  std::unique_ptr<local_vector_type> local_vector);
648 
649  void resize(dim<2> global_size, dim<2> local_size);
650 
651  template <typename LocalIndexType, typename GlobalIndexType>
652  void read_distributed_impl(
653  const device_matrix_data<ValueType, GlobalIndexType>& data,
654  const Partition<LocalIndexType, GlobalIndexType>* partition);
655 
656  void apply_impl(const LinOp*, LinOp*) const override;
657 
658  void apply_impl(const LinOp*, const LinOp*, const LinOp*,
659  LinOp*) const override;
660 
667  virtual std::unique_ptr<Vector> create_with_same_config() const;
668 
681  virtual std::unique_ptr<Vector> create_with_type_of_impl(
682  std::shared_ptr<const Executor> exec, const dim<2>& global_size,
683  const dim<2>& local_size, size_type stride) const;
684 
688  virtual std::unique_ptr<Vector> create_submatrix_impl(local_span rows,
689  local_span columns,
690  dim<2> global_size);
691 
692 private:
693  local_vector_type local_;
694  ::gko::detail::DenseCache<ValueType> host_reduction_buffer_;
695  ::gko::detail::DenseCache<remove_complex<ValueType>> host_norm_buffer_;
696 };
697 
698 
699 } // namespace distributed
700 } // namespace experimental
701 
702 
703 namespace detail {
704 
705 
706 template <typename TargetType>
707 struct conversion_target_helper;
708 
709 
719 template <typename ValueType>
720 struct conversion_target_helper<experimental::distributed::Vector<ValueType>> {
721  using target_type = experimental::distributed::Vector<ValueType>;
722  using source_type =
723  experimental::distributed::Vector<previous_precision<ValueType>>;
724 
725  static std::unique_ptr<target_type> create_empty(const source_type* source)
726  {
727  return target_type::create(source->get_executor(),
728  source->get_communicator());
729  }
730 
731  // Allow to create_empty of the same type
732  // For distributed case, next<next<V>> will be V in the candidate list.
733  // TODO: decide to whether to add this or add condition to the list
734  static std::unique_ptr<target_type> create_empty(const target_type* source)
735  {
736  return target_type::create(source->get_executor(),
737  source->get_communicator());
738  }
739 
740 #if GINKGO_ENABLE_HALF || GINKGO_ENABLE_BFLOAT16
741  using snd_source_type =
742  experimental::distributed::Vector<previous_precision<ValueType, 2>>;
743 
744  static std::unique_ptr<target_type> create_empty(
745  const snd_source_type* source)
746  {
747  return target_type::create(source->get_executor(),
748  source->get_communicator());
749  }
750 #endif
751 #if GINKGO_ENABLE_HALF && GINKGO_ENABLE_BFLOAT16
752  using trd_source_type =
753  experimental::distributed::Vector<previous_precision<ValueType, 3>>;
754 
755  static std::unique_ptr<target_type> create_empty(
756  const trd_source_type* source)
757  {
758  return target_type::create(source->get_executor(),
759  source->get_communicator());
760  }
761 #endif
762 };
763 
764 
765 } // namespace detail
766 } // namespace gko
767 
768 
769 #endif // GINKGO_BUILD_MPI
770 
771 
772 #endif // GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
gko::experimental::distributed::Vector::create_submatrix
std::unique_ptr< Vector > create_submatrix(local_span rows, local_span columns, dim< 2 > global_size)
Creates a view of a submatrix of this vector.
gko::EnablePolymorphicAssignment< ConcreteLinOp >::move_to
void move_to(result_type *result) override
Definition: polymorphic_object.hpp:751
gko::EnablePolymorphicAssignment< ConcreteLinOp >::convert_to
void convert_to(result_type *result) const override
Definition: polymorphic_object.hpp:749
gko::experimental::distributed::Vector::at_local
value_type & at_local(size_type row, size_type col) noexcept
Returns a single element of the multi-vector.
gko::matrix::Dense< value_type >
gko::experimental::distributed::Vector::make_complex
std::unique_ptr< complex_type > make_complex() const
Creates a complex copy of the original vectors.
gko::experimental::distributed::Vector::create_with_type_of
static std::unique_ptr< Vector > create_with_type_of(ptr_param< const Vector > other, std::shared_ptr< const Executor > exec)
Creates an empty Vector with the same type as another Vector, but on a different executor.
gko::experimental::distributed::Vector::compute_squared_norm2
void compute_squared_norm2(ptr_param< LinOp > result) const
Computes the square of the column-wise Euclidean ( ) norm of this (multi-)vector using a global reduc...
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:90
gko::experimental::distributed::Vector::create
static std::unique_ptr< Vector > create(std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > global_size, dim< 2 > local_size, size_type stride)
Creates an empty distributed vector with a specified size.
gko::experimental::distributed::Vector::read_distributed
void read_distributed(const device_matrix_data< ValueType, int64 > &data, ptr_param< const Partition< int64, int64 >> partition)
Reads a vector from the device_matrix_data structure and a global row partition.
gko::experimental::distributed::Vector::create_real_view
std::unique_ptr< const real_type > create_real_view() const
Create a real view of the (potentially) complex original multi-vector.
gko::experimental::distributed::Vector::compute_norm1
void compute_norm1(ptr_param< LinOp > result) const
Computes the column-wise (L^1) norm of this (multi-)vector.
gko::experimental::distributed::Vector::get_real
std::unique_ptr< real_type > get_real() const
Creates new real vectors and extracts the real part of the original vectors into that.
gko::experimental::distributed::Vector::get_local_values
value_type * get_local_values()
Returns a pointer to the array of local values of the multi-vector.
gko::matrix::Dense::get_stride
size_type get_stride() const noexcept
Returns the stride of the matrix.
Definition: dense.hpp:879
gko::experimental::distributed::Vector::get_local_vector
const local_vector_type * get_local_vector() const
Direct (read) access to the underlying local local_vector_type vectors.
gko
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
gko::experimental::distributed::Vector::fill
void fill(ValueType value)
Fill the distributed vectors with a given value.
gko::experimental::distributed::Vector::compute_mean
void compute_mean(ptr_param< LinOp > result) const
Computes the column-wise mean of this (multi-)vector using a global reduction.
gko::experimental::distributed::Vector::create_with_config_of
static std::unique_ptr< Vector > create_with_config_of(ptr_param< const Vector > other)
Creates a distributed Vector with the same size and stride as another Vector.
gko::experimental::distributed::Vector::compute_absolute
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
gko::experimental::distributed::Vector::add_scaled
void add_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Adds b scaled by alpha to the vectors (aka: BLAS axpy).
gko::experimental::distributed::Vector::compute_dot
void compute_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this (multi-)vector and b using a global reduction.
gko::experimental::distributed::Vector::compute_conj_dot
void compute_conj_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this (multi-)vector and conj(b) using a global reduction.
gko::previous_precision
typename detail::find_precision_impl< T, -step >::type previous_precision
Obtains the previous move type of T in the singly-linked precision corresponding bfloat16/half.
Definition: math.hpp:473
gko::experimental::distributed::Vector::compute_absolute_inplace
void compute_absolute_inplace() override
Compute absolute inplace on each element.
gko::experimental::distributed::Vector::create_const
static std::unique_ptr< const Vector > create_const(std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > global_size, std::unique_ptr< const local_vector_type > local_vector)
Creates a constant (immutable) distributed Vector from a constant local vector.
gko::experimental::distributed::Vector::get_imag
std::unique_ptr< real_type > get_imag() const
Creates new real vectors and extracts the imaginary part of the original vectors into that.
gko::experimental::distributed::Vector::compute_norm2
void compute_norm2(ptr_param< LinOp > result) const
Computes the Euclidean (L^2) norm of this (multi-)vector using a global reduction.
gko::experimental::distributed::Vector::get_const_local_values
const value_type * get_const_local_values() const
Returns a pointer to the array of local values of the multi-vector.
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:264
gko::experimental::distributed::Vector::inv_scale
void inv_scale(ptr_param< const LinOp > alpha)
Scales the vectors with the inverse of a scalar.
gko::experimental::distributed::Vector::sub_scaled
void sub_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Subtracts b scaled by alpha from the vectors (aka: BLAS axpy).
gko::LinOp::LinOp
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
gko::to_complex
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:283
gko::experimental::distributed::Vector::scale
void scale(ptr_param< const LinOp > alpha)
Scales the vectors with a scalar (aka: BLAS scal).