The preconditioned solver example..
This example depends on preconditioned-solver.
This example shows how to use the adaptive precision block-Jacobi preconditioner.
In this example, we first read in a matrix from file, then generate a right-hand side and an initial guess. The preconditioned CG solver is enhanced with a block-Jacobi preconditioner that optimizes the storage format for the distinct inverted diagonal blocks to the numerical requirements. The example features the iteration count and runtime of the CG solver.
The commented program
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
Figure out where to run the code
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
Read data
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
Create RHS and initial guess as 1
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
Calculate initial residual by overwriting b
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
copy b again
Create solver factory
const RealValueType reduction_factor = 1e-7;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(10000u),
.with_reduction_factor(reduction_factor))
Add preconditioner, these 2 lines are the only difference from the simple solver example
.with_preconditioner(
bj::build().with_max_block_size(16u).with_storage_optimization(
.on(exec);
Create solver
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver_gen->add_logger(logger);
auto solver = solver_gen->generate(A);
Solve system
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
Get residual
auto res = gko::as<real_vec>(logger->get_residual_norm());
auto impl_res = gko::as<real_vec>(logger->get_implicit_sq_resnorm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
std::cout << "Implicit residual norm squared (r^2):\n";
write(std::cout, impl_res);
Print solver statistics
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
}
Results
This is the expected output:
Initial residual norm sqrt(r^T r):
1 1
194.679
Final residual norm sqrt(r^T r):
1 1
5.69384e-06
Implicit residual norm squared (r^2):
1 1
1.27043e-15
CG iteration count: 5
CG execution time [ms]: 0.080041
Comments about programming and debugging
The plain program
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
if (argc == 2 && (std::string(argv[1]) == "--help")) {
std::cerr << "Usage: " << argv[0] << " [executor]" << std::endl;
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_x);
const RealValueType reduction_factor = 1e-7;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(10000u),
.with_reduction_factor(reduction_factor))
.with_preconditioner(
bj::build().with_max_block_size(16u).with_storage_optimization(
.on(exec);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver_gen->add_logger(logger);
auto solver = solver_gen->generate(A);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::as<real_vec>(logger->get_residual_norm());
auto impl_res = gko::as<real_vec>(logger->get_implicit_sq_resnorm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
std::cout << "Implicit residual norm squared (r^2):\n";
write(std::cout, impl_res);
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
}