|
Ginkgo
Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
|
5 #ifndef GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
6 #define GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
9 #include <initializer_list>
10 #include <type_traits>
13 #include <ginkgo/core/base/array.hpp>
14 #include <ginkgo/core/base/exception_helpers.hpp>
15 #include <ginkgo/core/base/executor.hpp>
16 #include <ginkgo/core/base/lin_op.hpp>
17 #include <ginkgo/core/base/range_accessors.hpp>
18 #include <ginkgo/core/base/types.hpp>
19 #include <ginkgo/core/base/utils.hpp>
20 #include <ginkgo/core/matrix/permutation.hpp>
21 #include <ginkgo/core/matrix/scaled_permutation.hpp>
25 namespace experimental {
26 namespace distributed {
29 template <
typename ValueType>
40 template <
typename ValueType,
typename IndexType>
43 template <
typename ValueType,
typename IndexType>
46 template <
typename ValueType>
49 template <
typename ValueType,
typename IndexType>
52 template <
typename ValueType,
typename IndexType>
55 template <
typename ValueType,
typename IndexType>
58 template <
typename ValueType,
typename IndexType>
61 template <
typename ValueType,
typename IndexType>
80 template <
typename ValueType = default_precision>
82 :
public EnableLinOp<Dense<ValueType>>,
83 public ConvertibleTo<Dense<next_precision<ValueType>>>,
84 public ConvertibleTo<Coo<ValueType, int32>>,
85 public ConvertibleTo<Coo<ValueType, int64>>,
86 public ConvertibleTo<Csr<ValueType, int32>>,
87 public ConvertibleTo<Csr<ValueType, int64>>,
88 public ConvertibleTo<Ell<ValueType, int32>>,
89 public ConvertibleTo<Ell<ValueType, int64>>,
90 public ConvertibleTo<Fbcsr<ValueType, int32>>,
91 public ConvertibleTo<Fbcsr<ValueType, int64>>,
92 public ConvertibleTo<Hybrid<ValueType, int32>>,
93 public ConvertibleTo<Hybrid<ValueType, int64>>,
94 public ConvertibleTo<Sellp<ValueType, int32>>,
95 public ConvertibleTo<Sellp<ValueType, int64>>,
96 public ConvertibleTo<SparsityCsr<ValueType, int32>>,
97 public ConvertibleTo<SparsityCsr<ValueType, int64>>,
98 public DiagonalExtractable<ValueType>,
99 public ReadableFromMatrixData<ValueType, int32>,
100 public ReadableFromMatrixData<ValueType, int64>,
101 public WritableToMatrixData<ValueType, int32>,
102 public WritableToMatrixData<ValueType, int64>,
104 public Permutable<int32>,
105 public Permutable<int64>,
106 public EnableAbsoluteComputation<remove_complex<Dense<ValueType>>>,
107 public ScaledIdentityAddable {
108 friend class EnablePolymorphicObject<
Dense,
LinOp>;
109 friend class Coo<ValueType,
int32>;
110 friend class Coo<ValueType,
int64>;
111 friend class Csr<ValueType,
int32>;
112 friend class Csr<ValueType,
int64>;
113 friend class Diagonal<ValueType>;
114 friend class Ell<ValueType,
int32>;
115 friend class Ell<ValueType,
int64>;
116 friend class Fbcsr<ValueType,
int32>;
117 friend class Fbcsr<ValueType,
int64>;
118 friend class Hybrid<ValueType,
int32>;
119 friend class Hybrid<ValueType,
int64>;
120 friend class Sellp<ValueType,
int32>;
121 friend class Sellp<ValueType,
int64>;
122 friend class SparsityCsr<ValueType,
int32>;
123 friend class SparsityCsr<ValueType,
int64>;
125 friend class experimental::distributed::Vector<ValueType>;
130 using ConvertibleTo<Dense<next_precision<ValueType>>>::convert_to;
131 using ConvertibleTo<Dense<next_precision<ValueType>>>::move_to;
132 using ConvertibleTo<Coo<ValueType, int32>>::convert_to;
133 using ConvertibleTo<Coo<ValueType, int32>>::move_to;
134 using ConvertibleTo<Coo<ValueType, int64>>::convert_to;
135 using ConvertibleTo<Coo<ValueType, int64>>::move_to;
136 using ConvertibleTo<Csr<ValueType, int32>>::convert_to;
137 using ConvertibleTo<Csr<ValueType, int32>>::move_to;
138 using ConvertibleTo<Csr<ValueType, int64>>::convert_to;
139 using ConvertibleTo<Csr<ValueType, int64>>::move_to;
140 using ConvertibleTo<Ell<ValueType, int32>>::convert_to;
141 using ConvertibleTo<Ell<ValueType, int32>>::move_to;
142 using ConvertibleTo<Ell<ValueType, int64>>::convert_to;
143 using ConvertibleTo<Ell<ValueType, int64>>::move_to;
144 using ConvertibleTo<Fbcsr<ValueType, int32>>::convert_to;
145 using ConvertibleTo<Fbcsr<ValueType, int32>>::move_to;
146 using ConvertibleTo<Fbcsr<ValueType, int64>>::convert_to;
147 using ConvertibleTo<Fbcsr<ValueType, int64>>::move_to;
148 using ConvertibleTo<Hybrid<ValueType, int32>>::convert_to;
149 using ConvertibleTo<Hybrid<ValueType, int32>>::move_to;
150 using ConvertibleTo<Hybrid<ValueType, int64>>::convert_to;
151 using ConvertibleTo<Hybrid<ValueType, int64>>::move_to;
152 using ConvertibleTo<Sellp<ValueType, int32>>::convert_to;
153 using ConvertibleTo<Sellp<ValueType, int32>>::move_to;
154 using ConvertibleTo<Sellp<ValueType, int64>>::convert_to;
155 using ConvertibleTo<Sellp<ValueType, int64>>::move_to;
156 using ConvertibleTo<SparsityCsr<ValueType, int32>>::convert_to;
157 using ConvertibleTo<SparsityCsr<ValueType, int32>>::move_to;
158 using ConvertibleTo<SparsityCsr<ValueType, int64>>::convert_to;
159 using ConvertibleTo<SparsityCsr<ValueType, int64>>::move_to;
163 using value_type = ValueType;
164 using index_type =
int64;
165 using transposed_type = Dense<ValueType>;
166 using mat_data = matrix_data<ValueType, int64>;
167 using mat_data32 = matrix_data<ValueType, int32>;
168 using device_mat_data = device_matrix_data<ValueType, int64>;
169 using device_mat_data32 = device_matrix_data<ValueType, int32>;
170 using absolute_type = remove_complex<Dense>;
171 using real_type = absolute_type;
172 using complex_type = to_complex<Dense>;
189 return (*other).create_with_same_config();
208 return (*other).create_with_type_of_impl(exec, size, size[1]);
224 return (*other).create_with_type_of_impl(exec, size, stride);
242 return (*other).create_with_type_of_impl(exec, size, stride);
255 return other->create_view_of_impl();
268 return other->create_const_view_of_impl();
333 void read(
const mat_data& data)
override;
335 void read(
const mat_data32& data)
override;
337 void read(
const device_mat_data& data)
override;
339 void read(
const device_mat_data32& data)
override;
341 void read(device_mat_data&& data)
override;
343 void read(device_mat_data32&& data)
override;
345 void write(mat_data& data)
const override;
347 void write(mat_data32& data)
const override;
349 std::unique_ptr<LinOp>
transpose()
const override;
374 void fill(
const ValueType value);
390 std::unique_ptr<Dense>
permute(
397 std::unique_ptr<Dense>
permute(
429 std::unique_ptr<Dense>
permute(
432 bool invert =
false)
const;
438 std::unique_ptr<Dense>
permute(
441 bool invert =
false)
const;
516 bool invert =
false)
const;
526 bool invert =
false)
const;
551 std::unique_ptr<LinOp>
permute(
552 const array<int32>* permutation_indices)
const override;
554 std::unique_ptr<LinOp>
permute(
555 const array<int64>* permutation_indices)
const override;
576 const array<int32>* permutation_indices)
const override;
579 const array<int64>* permutation_indices)
const override;
601 const array<int32>* permutation_indices)
const override;
604 const array<int64>* permutation_indices)
const override;
690 const array<int32>* permutation_indices)
const override;
693 const array<int64>* permutation_indices)
const override;
714 const array<int32>* permutation_indices)
const override;
717 const array<int64>* permutation_indices)
const override;
738 const array<int32>* permutation_indices)
const override;
741 const array<int64>* permutation_indices)
const override;
802 std::unique_ptr<real_type>
get_real()
const;
813 std::unique_ptr<real_type>
get_imag()
const;
869 return values_.
get_data()[linearize_index(row, col)];
896 return values_.
get_data()[linearize_index(idx)];
1102 return this->create_submatrix_impl(
rows,
columns, stride);
1143 static std::unique_ptr<Dense>
create(std::shared_ptr<const Executor> exec,
1163 static std::unique_ptr<Dense>
create(std::shared_ptr<const Executor> exec,
1172 template <
typename InputValueType>
1174 "explicitly construct the gko::array argument instead of passing an"
1177 std::shared_ptr<const
Executor> exec, const
dim<2>& size,
1178 std::initializer_list<InputValueType> values,
size_type stride)
1196 std::shared_ptr<const Executor> exec,
const dim<2>& size,
1197 gko::detail::const_array_view<ValueType>&& values,
size_type stride);
1226 Dense(std::shared_ptr<const Executor> exec,
const dim<2>& size = {},
1229 Dense(std::shared_ptr<const Executor> exec,
const dim<2>& size,
1238 virtual std::unique_ptr<Dense> create_with_same_config()
const
1251 virtual std::unique_ptr<Dense> create_with_type_of_impl(
1252 std::shared_ptr<const Executor> exec,
const dim<2>& size,
1264 virtual std::unique_ptr<Dense> create_view_of_impl()
1280 virtual std::unique_ptr<const Dense> create_const_view_of_impl()
const
1290 template <
typename IndexType>
1291 void convert_impl(Coo<ValueType, IndexType>* result)
const;
1293 template <
typename IndexType>
1294 void convert_impl(Csr<ValueType, IndexType>* result)
const;
1296 template <
typename IndexType>
1297 void convert_impl(Ell<ValueType, IndexType>* result)
const;
1299 template <
typename IndexType>
1300 void convert_impl(Fbcsr<ValueType, IndexType>* result)
const;
1302 template <
typename IndexType>
1303 void convert_impl(Hybrid<ValueType, IndexType>* result)
const;
1305 template <
typename IndexType>
1306 void convert_impl(Sellp<ValueType, IndexType>* result)
const;
1308 template <
typename IndexType>
1309 void convert_impl(SparsityCsr<ValueType, IndexType>* result)
const;
1317 virtual void scale_impl(
const LinOp* alpha);
1325 virtual void inv_scale_impl(
const LinOp* alpha);
1333 virtual void add_scaled_impl(
const LinOp* alpha,
const LinOp* b);
1341 virtual void sub_scaled_impl(
const LinOp* alpha,
const LinOp* b);
1349 virtual void compute_dot_impl(
const LinOp* b,
LinOp* result)
const;
1357 virtual void compute_conj_dot_impl(
const LinOp* b,
LinOp* result)
const;
1365 virtual void compute_norm2_impl(
LinOp* result)
const;
1373 virtual void compute_norm1_impl(
LinOp* result)
const;
1381 virtual void compute_squared_norm2_impl(
LinOp* result)
const;
1386 virtual void compute_mean_impl(
LinOp* result)
const;
1405 virtual std::unique_ptr<Dense> create_submatrix_impl(
1408 void apply_impl(
const LinOp* b,
LinOp* x)
const override;
1410 void apply_impl(
const LinOp* alpha,
const LinOp* b,
const LinOp* beta,
1411 LinOp* x)
const override;
1415 return row * stride_ + col;
1420 return linearize_index(idx / this->
get_size()[1],
1424 template <
typename IndexType>
1425 void permute_impl(
const Permutation<IndexType>* permutation,
1428 template <
typename IndexType>
1429 void permute_impl(
const Permutation<IndexType>* row_permutation,
1430 const Permutation<IndexType>* col_permutation,
1431 bool invert,
Dense* output)
const;
1433 template <
typename IndexType>
1434 void scale_permute_impl(
1435 const ScaledPermutation<ValueType, IndexType>* permutation,
1438 template <
typename IndexType>
1439 void scale_permute_impl(
1440 const ScaledPermutation<ValueType, IndexType>* row_permutation,
1441 const ScaledPermutation<ValueType, IndexType>* column_permutation,
1442 bool invert,
Dense* output)
const;
1444 template <
typename OutputType,
typename IndexType>
1445 void row_gather_impl(
const array<IndexType>* row_idxs,
1446 Dense<OutputType>* row_collection)
const;
1448 template <
typename OutputType,
typename IndexType>
1449 void row_gather_impl(
const Dense<ValueType>* alpha,
1450 const array<IndexType>* row_idxs,
1451 const Dense<ValueType>* beta,
1452 Dense<OutputType>* row_collection)
const;
1456 array<value_type> values_;
1458 void add_scaled_identity_impl(
const LinOp* a,
const LinOp* b)
override;
1468 template <
typename ValueType>
1469 struct temporary_clone_helper<matrix::Dense<ValueType>> {
1470 static std::unique_ptr<matrix::Dense<ValueType>> create(
1471 std::shared_ptr<const Executor> exec, matrix::Dense<ValueType>* ptr,
1493 template <
typename VecPtr>
1494 std::unique_ptr<matrix::Dense<typename detail::pointee<VecPtr>::value_type>>
1497 using value_type =
typename detail::pointee<VecPtr>::value_type;
1509 template <
typename VecPtr>
1511 const matrix::Dense<typename detail::pointee<VecPtr>::value_type>>
1514 using value_type =
typename detail::pointee<VecPtr>::value_type;
1539 template <
typename Matrix,
typename... TArgs>
1541 size_type stride, std::initializer_list<typename Matrix::value_type> vals,
1542 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1546 auto tmp = dense::create(exec->get_master(),
dim<2>{num_rows, 1}, stride);
1548 for (
const auto& elem : vals) {
1549 tmp->
at(idx) = elem;
1552 auto mtx = Matrix::create(exec, std::forward<TArgs>(create_args)...);
1577 template <
typename Matrix,
typename... TArgs>
1579 std::initializer_list<typename Matrix::value_type> vals,
1580 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1582 return initialize<Matrix>(1, vals, std::move(exec),
1583 std::forward<TArgs>(create_args)...);
1607 template <
typename Matrix,
typename... TArgs>
1610 std::initializer_list<std::initializer_list<typename Matrix::value_type>>
1612 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1616 size_type num_cols = num_rows > 0 ? begin(vals)->size() : 1;
1618 dense::create(exec->get_master(),
dim<2>{num_rows, num_cols}, stride);
1620 for (
const auto& row : vals) {
1622 for (
const auto& elem : row) {
1623 tmp->
at(ridx, cidx) = elem;
1628 auto mtx = Matrix::create(exec, std::forward<TArgs>(create_args)...);
1655 template <
typename Matrix,
typename... TArgs>
1657 std::initializer_list<std::initializer_list<typename Matrix::value_type>>
1659 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1661 return initialize<Matrix>(vals.size() > 0 ? begin(vals)->size() : 0, vals,
1663 std::forward<TArgs>(create_args)...);
1670 #endif // GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
std::unique_ptr< Dense > permute(ptr_param< const Permutation< int32 >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a permuted copy of this matrix with the given permutation .
std::unique_ptr< LinOp > inverse_column_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
void add_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Adds b scaled by alpha to the matrix (aka: BLAS axpy).
Fixed-block compressed sparse row storage matrix format.
Definition: csr.hpp:46
void move_to(result_type *result) override
Definition: polymorphic_object.hpp:732
void convert_to(result_type *result) const override
Definition: polymorphic_object.hpp:730
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:27
The rows will be permuted.
std::unique_ptr< LinOp > transpose() const override
Returns a LinOp representing the transpose of the Transposable object.
The columns will be permuted.
virtual void read(const matrix_data< ValueType, int32 > &data)=0
Reads a matrix from a matrix_data structure.
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:20
SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressi...
Definition: csr.hpp:40
ValueType at(size_type idx) const noexcept
Returns a single element of the matrix.
Definition: dense.hpp:902
std::unique_ptr< Dense > row_gather(const array< int32 > *gather_indices) const
Create a Dense matrix consisting of the given rows from this matrix.
std::unique_ptr< complex_type > make_complex() const
Creates a complex copy of the original matrix.
static std::unique_ptr< Dense > create(std::shared_ptr< const Executor > exec, const dim< 2 > &size={}, size_type stride=0)
Creates an uninitialized Dense matrix of the specified size.
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size, size_type stride)
Definition: dense.hpp:219
void scale(ptr_param< const LinOp > alpha)
Scales the matrix with a scalar (aka: BLAS scal).
ScaledPermutation is a matrix combining a permutation with scaling factors.
Definition: scaled_permutation.hpp:37
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:108
std::unique_ptr< real_type > get_real() const
Creates a new real matrix and extracts the real part of the original matrix into that.
void inv_scale(ptr_param< const LinOp > alpha)
Scales the matrix with the inverse of a scalar.
Permutation is a matrix format that represents a permutation matrix, i.e.
Definition: permutation.hpp:112
void fill(const ValueType value)
Fill the dense matrix with a given value.
detail::const_array_view< ValueType > make_const_array_view(std::shared_ptr< const Executor > exec, size_type size, const ValueType *data)
Helper function to create a const array view deducing the value type.
Definition: array.hpp:807
void compute_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this matrix and b.
std::unique_ptr< Dense > create_submatrix(const span &rows, const span &columns, const size_type stride)
Create a submatrix from the original matrix.
Definition: dense.hpp:1098
static std::unique_ptr< Dense > create_with_config_of(ptr_param< const Dense > other)
Creates a Dense matrix with the same size and stride as another Dense matrix.
Definition: dense.hpp:182
std::unique_ptr< Matrix > initialize(size_type stride, std::initializer_list< typename Matrix::value_type > vals, std::shared_ptr< const Executor > exec, TArgs &&... create_args)
Creates and initializes a column-vector.
Definition: dense.hpp:1540
value_type & at(size_type row, size_type col) noexcept
Returns a single element of the matrix.
Definition: dense.hpp:867
detail::cloned_type< Pointer > clone(const Pointer &p)
Creates a unique clone of the object pointed to by p.
Definition: utils_helper.hpp:175
size_type get_stride() const noexcept
Returns the stride of the matrix.
Definition: dense.hpp:845
static std::unique_ptr< Dense > create_view_of(ptr_param< Dense > other)
Creates a Dense matrix, where the underlying array is a view of another Dense matrix' array.
Definition: dense.hpp:253
A range is a multidimensional view of the memory.
Definition: range.hpp:298
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
size_type get_num_stored_elements() const noexcept
Returns the number of elements explicitly stored in the matrix.
Definition: dense.hpp:852
void sub_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Subtracts b scaled by alpha from the matrix (aka: BLAS axpy).
value_type * get_values() noexcept
Returns a pointer to the array of values of the matrix.
Definition: dense.hpp:826
An array is a container which encapsulates fixed-sized arrays, stored on the Executor tied to the arr...
Definition: array.hpp:27
void compute_norm2(ptr_param< LinOp > result) const
Computes the column-wise Euclidean (L^2) norm of this matrix.
std::unique_ptr< LinOp > row_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the Permutable object.
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size=dim< 2 >{})
Creates a Dense matrix with the same type as another Dense matrix but on a different executor and wit...
Definition: dense.hpp:203
A span is a lightweight structure used to create sub-ranges from other ranges.
Definition: range.hpp:47
This class is a utility which efficiently implements the diagonal matrix (a linear operator which sca...
Definition: lin_op.hpp:32
typename detail::next_precision_impl< T >::type next_precision
Obtains the next type in the singly-linked precision list.
Definition: math.hpp:462
static std::unique_ptr< const Dense > create_const(std::shared_ptr< const Executor > exec, const dim< 2 > &size, gko::detail::const_array_view< ValueType > &&values, size_type stride)
Creates a constant (immutable) Dense matrix from a constant array.
This class is used for function parameters in the place of raw pointers.
Definition: utils_helper.hpp:43
value_type at(size_type row, size_type col) const noexcept
Returns a single element of the matrix.
Definition: dense.hpp:875
value_type * get_data() noexcept
Returns a pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:674
void compute_mean(ptr_param< LinOp > result) const
Computes the column-wise arithmetic mean of this matrix.
std::unique_ptr< LinOp > inverse_row_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
The rows and columns will be permuted.
std::unique_ptr< real_type > get_imag() const
Creates a new real matrix and extracts the imaginary part of the original matrix into that.
void compute_squared_norm2(ptr_param< LinOp > result) const
Computes the square of the column-wise Euclidean (L^2) norm of this matrix.
Dense & operator=(const Dense &)
Copy-assigns a Dense matrix.
std::unique_ptr< LinOp > inverse_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the symmetric inverse row and column permutation of the Permutable objec...
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size, const dim< 2 > &local_size, size_type stride)
Definition: dense.hpp:237
mode
The mode for the residual norm criterion.
Definition: residual_norm.hpp:37
std::unique_ptr< Dense > scale_permute(ptr_param< const ScaledPermutation< value_type, int32 >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a scaled and permuted copy of this matrix.
void compute_norm1(ptr_param< LinOp > result) const
Computes the column-wise (L^1) norm of this matrix.
const value_type * get_const_values() const noexcept
Returns a pointer to the array of values of the matrix.
Definition: dense.hpp:835
array< ValueType > make_array_view(std::shared_ptr< const Executor > exec, size_type size, ValueType *data)
Helper function to create an array view deducing the value type.
Definition: array.hpp:788
std::unique_ptr< Diagonal< ValueType > > extract_diagonal() const override
Extracts the diagonal entries of the matrix into a vector.
void compute_absolute_inplace() override
Compute absolute inplace on each element.
std::unique_ptr< LinOp > column_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the column permutation of the Permutable object.
static std::unique_ptr< const Dense > create_const_view_of(ptr_param< const Dense > other)
Creates a immutable Dense matrix, where the underlying array is a view of another Dense matrix' array...
Definition: dense.hpp:265
ValueType & at(size_type idx) noexcept
Returns a single element of the matrix.
Definition: dense.hpp:894
std::unique_ptr< LinOp > conj_transpose() const override
Returns a LinOp representing the conjugate transpose of the Transposable object.
std::int64_t int64
64-bit signed integral type.
Definition: types.hpp:131
void compute_conj_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of conj(this matrix) and b.
ELL is a matrix format where stride with explicit zeros is used such that all rows have the same numb...
Definition: csr.hpp:31
std::unique_ptr< Dense > create_submatrix(const span &rows, const span &columns)
Create a submatrix from the original matrix.
Definition: dense.hpp:1111
std::int32_t int32
32-bit signed integral type.
Definition: types.hpp:125
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
std::unique_ptr< matrix::Dense< typename detail::pointee< VecPtr >::value_type > > make_dense_view(VecPtr &&vector)
Creates a view of a given Dense vector.
Definition: dense.hpp:1495
The first step in using the Ginkgo library consists of creating an executor.
Definition: executor.hpp:616
HYBRID is a matrix format which splits the matrix into ELLPACK and COO format.
Definition: coo.hpp:32
const value_type * get_const_data() const noexcept
Returns a constant pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:683
permute_mode
Specifies how a permutation will be applied to a matrix.
Definition: permutation.hpp:43
Dense(const Dense &)
Copy-constructs a Dense matrix.
SELL-P is a matrix format similar to ELL format.
Definition: csr.hpp:37
std::unique_ptr< const matrix::Dense< typename detail::pointee< VecPtr >::value_type > > make_const_dense_view(VecPtr &&vector)
Creates a view of a given Dense vector.
Definition: dense.hpp:1512
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor of the object.
Definition: polymorphic_object.hpp:235
size_type get_size() const noexcept
Returns the number of elements in the array.
Definition: array.hpp:657
const dim< 2 > & get_size() const noexcept
Returns the size of the operator.
Definition: lin_op.hpp:211
std::unique_ptr< real_type > create_real_view()
Create a real view of the (potentially) complex original matrix.
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:345
COO stores a matrix in the coordinate matrix format.
Definition: coo.hpp:50