The iterative refinement solver example..
This example depends on simple-solver.
This example shows how to use the iterative refinement solver.
In this example, we first read in a matrix from file, then generate a right-hand side and an initial guess. An inaccurate CG solver is used as the inner solver to an iterative refinement (IR) method which solves a linear system. The example features the iteration count and runtime of the IR solver.
The commented program
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
Read data
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
Create RHS and initial guess as 1
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
Calculate initial residual by overwriting b
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
copy b again
Create solver factory
RealValueType outer_reduction_factor{1e-12};
RealValueType inner_reduction_factor{1e-2};
auto solver_gen =
ir::build()
.with_solver(cg::build().with_criteria(
.with_reduction_factor(inner_reduction_factor)))
.with_criteria(
gko::stop::Iteration::build().with_max_iters(max_iters),
.with_reduction_factor(outer_reduction_factor))
.on(exec);
Create solver
auto solver = solver_gen->generate(A);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
Solve system
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
Get residual
auto res = gko::as<real_vec>(logger->get_residual_norm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
Print solver statistics
std::cout << "IR iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "IR execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
}
Results
This is the expected output:
Initial residual norm sqrt(r^T r):
1 1
194.679
Final residual norm sqrt(r^T r):
1 1
4.23821e-11
IR iteration count: 24
IR execution time [ms]: 0.794962
Comments about programming and debugging
The plain program
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
if (argc == 2 && (std::string(argv[1]) == "--help")) {
std::cerr << "Usage: " << argv[0] << " [executor]" << std::endl;
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_x);
RealValueType outer_reduction_factor{1e-12};
RealValueType inner_reduction_factor{1e-2};
auto solver_gen =
ir::build()
.with_solver(cg::build().with_criteria(
.with_reduction_factor(inner_reduction_factor)))
.with_criteria(
gko::stop::Iteration::build().with_max_iters(max_iters),
.with_reduction_factor(outer_reduction_factor))
.on(exec);
auto solver = solver_gen->generate(A);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::as<real_vec>(logger->get_residual_norm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
std::cout << "IR iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "IR execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
}