The preconditioned solver example..
This example depends on simple-solver.
Introduction
About the example
The commented program
Figure out where to run the code
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
Read data
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
auto b = gko::read<vec>(std::ifstream("data/b.mtx"), exec);
auto x = gko::read<vec>(std::ifstream("data/x0.mtx"), exec);
const RealValueType reduction_factor{1e-7};
Create solver factory
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(20u),
.with_reduction_factor(reduction_factor))
Add preconditioner, these 2 lines are the only difference from the simple solver example
.with_preconditioner(bj::build().with_max_block_size(8u))
.on(exec);
Create solver
auto solver = solver_gen->generate(A);
Solve system
Print solution
std::cout << "Solution (x):\n";
Calculate residual
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto res = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Residual norm sqrt(r^T r):\n";
}
Results
This is the expected output:
Solution (x):
19 1
0.252218
0.108645
0.0662811
0.0630433
0.0384088
0.0396536
0.0402648
0.0338935
0.0193098
0.0234653
0.0211499
0.0196413
0.0199151
0.0181674
0.0162722
0.0150714
0.0107016
0.0121141
0.0123025
Residual norm sqrt(r^T r):
1 1
4.82005e-08
Comments about programming and debugging
The plain program
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
if (argc == 2 && (std::string(argv[1]) == "--help")) {
std::cerr << "Usage: " << argv[0] << " [executor]" << std::endl;
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
auto b = gko::read<vec>(std::ifstream("data/b.mtx"), exec);
auto x = gko::read<vec>(std::ifstream("data/x0.mtx"), exec);
const RealValueType reduction_factor{1e-7};
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(20u),
.with_reduction_factor(reduction_factor))
.with_preconditioner(bj::build().with_max_block_size(8u))
.on(exec);
auto solver = solver_gen->generate(A);
std::cout << "Solution (x):\n";
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto res = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Residual norm sqrt(r^T r):\n";
}