Ginkgo  Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
vector.hpp
1 // SPDX-FileCopyrightText: 2017 - 2024 The Ginkgo authors
2 //
3 // SPDX-License-Identifier: BSD-3-Clause
4 
5 #ifndef GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
6 #define GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
7 
8 
9 #include <ginkgo/config.hpp>
10 
11 
12 #if GINKGO_BUILD_MPI
13 
14 
15 #include <ginkgo/core/base/dense_cache.hpp>
16 #include <ginkgo/core/base/mpi.hpp>
17 #include <ginkgo/core/distributed/base.hpp>
18 #include <ginkgo/core/distributed/lin_op.hpp>
19 #include <ginkgo/core/matrix/dense.hpp>
20 
21 
22 namespace gko {
23 namespace experimental {
24 namespace distributed {
25 
26 
27 template <typename LocalIndexType, typename GlobalIndexType>
28 class Partition;
29 
30 
58 template <typename ValueType = double>
59 class Vector
60  : public EnableDistributedLinOp<Vector<ValueType>>,
61  public ConvertibleTo<Vector<next_precision<ValueType>>>,
62  public EnableAbsoluteComputation<remove_complex<Vector<ValueType>>>,
63  public DistributedBase {
64  friend class EnableDistributedPolymorphicObject<Vector, LinOp>;
65  friend class Vector<to_complex<ValueType>>;
66  friend class Vector<remove_complex<ValueType>>;
67  friend class Vector<next_precision<ValueType>>;
68 
69 public:
72  using ConvertibleTo<Vector<next_precision<ValueType>>>::convert_to;
73  using ConvertibleTo<Vector<next_precision<ValueType>>>::move_to;
74 
75  using value_type = ValueType;
76  using absolute_type = remove_complex<Vector>;
77  using real_type = absolute_type;
78  using complex_type = Vector<to_complex<value_type>>;
79  using local_vector_type = gko::matrix::Dense<value_type>;
80 
87  static std::unique_ptr<Vector> create_with_config_of(
88  ptr_param<const Vector> other);
89 
90 
102  static std::unique_ptr<Vector> create_with_type_of(
103  ptr_param<const Vector> other, std::shared_ptr<const Executor> exec);
104 
117  static std::unique_ptr<Vector> create_with_type_of(
118  ptr_param<const Vector> other, std::shared_ptr<const Executor> exec,
119  const dim<2>& global_size, const dim<2>& local_size, size_type stride);
120 
135  void read_distributed(const device_matrix_data<ValueType, int64>& data,
136  ptr_param<const Partition<int64, int64>> partition);
137 
138  void read_distributed(const device_matrix_data<ValueType, int64>& data,
139  ptr_param<const Partition<int32, int64>> partition);
140 
141  void read_distributed(const device_matrix_data<ValueType, int32>& data,
142  ptr_param<const Partition<int32, int32>> partition);
143 
153  void read_distributed(const matrix_data<ValueType, int64>& data,
154  ptr_param<const Partition<int64, int64>> partition);
155 
156  void read_distributed(const matrix_data<ValueType, int64>& data,
157  ptr_param<const Partition<int32, int64>> partition);
158 
159  void read_distributed(const matrix_data<ValueType, int32>& data,
160  ptr_param<const Partition<int32, int32>> partition);
161 
162  void convert_to(Vector<next_precision<ValueType>>* result) const override;
163 
164  void move_to(Vector<next_precision<ValueType>>* result) override;
165 
166  std::unique_ptr<absolute_type> compute_absolute() const override;
167 
168  void compute_absolute_inplace() override;
169 
174  std::unique_ptr<complex_type> make_complex() const;
175 
181  void make_complex(ptr_param<complex_type> result) const;
182 
187  std::unique_ptr<real_type> get_real() const;
188 
192  void get_real(ptr_param<real_type> result) const;
193 
198  std::unique_ptr<real_type> get_imag() const;
199 
204  void get_imag(ptr_param<real_type> result) const;
205 
211  void fill(ValueType value);
212 
222  void scale(ptr_param<const LinOp> alpha);
223 
233  void inv_scale(ptr_param<const LinOp> alpha);
234 
244  void add_scaled(ptr_param<const LinOp> alpha, ptr_param<const LinOp> b);
245 
254  void sub_scaled(ptr_param<const LinOp> alpha, ptr_param<const LinOp> b);
255 
265  void compute_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result) const;
266 
279  void compute_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result,
280  array<char>& tmp) const;
281 
291  void compute_conj_dot(ptr_param<const LinOp> b,
292  ptr_param<LinOp> result) const;
293 
306  void compute_conj_dot(ptr_param<const LinOp> b, ptr_param<LinOp> result,
307  array<char>& tmp) const;
308 
317  void compute_squared_norm2(ptr_param<LinOp> result) const;
318 
330  void compute_squared_norm2(ptr_param<LinOp> result, array<char>& tmp) const;
331 
340  void compute_norm2(ptr_param<LinOp> result) const;
341 
353  void compute_norm2(ptr_param<LinOp> result, array<char>& tmp) const;
354 
362  void compute_norm1(ptr_param<LinOp> result) const;
363 
375  void compute_norm1(ptr_param<LinOp> result, array<char>& tmp) const;
376 
385  void compute_mean(ptr_param<LinOp> result) const;
386 
398  void compute_mean(ptr_param<LinOp> result, array<char>& tmp) const;
399 
410  value_type& at_local(size_type row, size_type col) noexcept;
411 
415  value_type at_local(size_type row, size_type col) const noexcept;
416 
431  ValueType& at_local(size_type idx) noexcept;
432 
436  ValueType at_local(size_type idx) const noexcept;
437 
443  value_type* get_local_values();
444 
452  const value_type* get_const_local_values() const;
453 
459  const local_vector_type* get_local_vector() const;
460 
468  std::unique_ptr<const real_type> create_real_view() const;
469 
473  std::unique_ptr<real_type> create_real_view();
474 
475  size_type get_stride() const noexcept { return local_.get_stride(); }
476 
488  static std::unique_ptr<Vector> create(std::shared_ptr<const Executor> exec,
489  mpi::communicator comm,
490  dim<2> global_size, dim<2> local_size,
491  size_type stride);
492 
504  static std::unique_ptr<Vector> create(std::shared_ptr<const Executor> exec,
505  mpi::communicator comm,
506  dim<2> global_size = {},
507  dim<2> local_size = {});
508 
526  static std::unique_ptr<Vector> create(
527  std::shared_ptr<const Executor> exec, mpi::communicator comm,
528  dim<2> global_size, std::unique_ptr<local_vector_type> local_vector);
529 
548  static std::unique_ptr<Vector> create(
549  std::shared_ptr<const Executor> exec, mpi::communicator comm,
550  std::unique_ptr<local_vector_type> local_vector);
551 
564  static std::unique_ptr<const Vector> create_const(
565  std::shared_ptr<const Executor> exec, mpi::communicator comm,
566  dim<2> global_size,
567  std::unique_ptr<const local_vector_type> local_vector);
568 
581  static std::unique_ptr<const Vector> create_const(
582  std::shared_ptr<const Executor> exec, mpi::communicator comm,
583  std::unique_ptr<const local_vector_type> local_vector);
584 
585 protected:
586  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
587  dim<2> global_size, dim<2> local_size, size_type stride);
588 
589  explicit Vector(std::shared_ptr<const Executor> exec,
590  mpi::communicator comm, dim<2> global_size = {},
591  dim<2> local_size = {});
592 
593  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
594  dim<2> global_size, std::unique_ptr<local_vector_type> local_vector);
595 
596  Vector(std::shared_ptr<const Executor> exec, mpi::communicator comm,
597  std::unique_ptr<local_vector_type> local_vector);
598 
599  void resize(dim<2> global_size, dim<2> local_size);
600 
601  template <typename LocalIndexType, typename GlobalIndexType>
602  void read_distributed_impl(
603  const device_matrix_data<ValueType, GlobalIndexType>& data,
604  const Partition<LocalIndexType, GlobalIndexType>* partition);
605 
606  void apply_impl(const LinOp*, LinOp*) const override;
607 
608  void apply_impl(const LinOp*, const LinOp*, const LinOp*,
609  LinOp*) const override;
610 
617  virtual std::unique_ptr<Vector> create_with_same_config() const;
618 
631  virtual std::unique_ptr<Vector> create_with_type_of_impl(
632  std::shared_ptr<const Executor> exec, const dim<2>& global_size,
633  const dim<2>& local_size, size_type stride) const;
634 
635 private:
636  local_vector_type local_;
637  ::gko::detail::DenseCache<ValueType> host_reduction_buffer_;
638  ::gko::detail::DenseCache<remove_complex<ValueType>> host_norm_buffer_;
639 };
640 
641 
642 } // namespace distributed
643 } // namespace experimental
644 
645 
646 namespace detail {
647 
648 
649 template <typename TargetType>
650 struct conversion_target_helper;
651 
652 
662 template <typename ValueType>
663 struct conversion_target_helper<experimental::distributed::Vector<ValueType>> {
664  using target_type = experimental::distributed::Vector<ValueType>;
665  using source_type =
666  experimental::distributed::Vector<previous_precision<ValueType>>;
667 
668  static std::unique_ptr<target_type> create_empty(const source_type* source)
669  {
670  return target_type::create(source->get_executor(),
671  source->get_communicator());
672  }
673 };
674 
675 
676 } // namespace detail
677 } // namespace gko
678 
679 
680 #endif // GINKGO_BUILD_MPI
681 
682 
683 #endif // GKO_PUBLIC_CORE_DISTRIBUTED_VECTOR_HPP_
gko::EnablePolymorphicAssignment< ConcreteLinOp >::move_to
void move_to(result_type *result) override
Definition: polymorphic_object.hpp:732
gko::EnablePolymorphicAssignment< ConcreteLinOp >::convert_to
void convert_to(result_type *result) const override
Definition: polymorphic_object.hpp:730
gko::experimental::distributed::Vector::at_local
value_type & at_local(size_type row, size_type col) noexcept
Returns a single element of the multi-vector.
gko::matrix::Dense< value_type >
gko::experimental::distributed::Vector::make_complex
std::unique_ptr< complex_type > make_complex() const
Creates a complex copy of the original vectors.
gko::experimental::distributed::Vector::create_with_type_of
static std::unique_ptr< Vector > create_with_type_of(ptr_param< const Vector > other, std::shared_ptr< const Executor > exec)
Creates an empty Vector with the same type as another Vector, but on a different executor.
gko::experimental::distributed::Vector::compute_squared_norm2
void compute_squared_norm2(ptr_param< LinOp > result) const
Computes the square of the column-wise Euclidean ( ) norm of this (multi-)vector using a global reduc...
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:108
gko::experimental::distributed::Vector::create
static std::unique_ptr< Vector > create(std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > global_size, dim< 2 > local_size, size_type stride)
Creates an empty distributed vector with a specified size.
gko::experimental::distributed::Vector::read_distributed
void read_distributed(const device_matrix_data< ValueType, int64 > &data, ptr_param< const Partition< int64, int64 >> partition)
Reads a vector from the device_matrix_data structure and a global row partition.
gko::experimental::distributed::Vector::create_real_view
std::unique_ptr< const real_type > create_real_view() const
Create a real view of the (potentially) complex original multi-vector.
gko::experimental::distributed::Vector::compute_norm1
void compute_norm1(ptr_param< LinOp > result) const
Computes the column-wise (L^1) norm of this (multi-)vector.
gko::experimental::distributed::Vector::get_real
std::unique_ptr< real_type > get_real() const
Creates new real vectors and extracts the real part of the original vectors into that.
gko::experimental::distributed::Vector::get_local_values
value_type * get_local_values()
Returns a pointer to the array of local values of the multi-vector.
gko::matrix::Dense::get_stride
size_type get_stride() const noexcept
Returns the stride of the matrix.
Definition: dense.hpp:845
gko::experimental::distributed::Vector::get_local_vector
const local_vector_type * get_local_vector() const
Direct (read) access to the underlying local local_vector_type vectors.
gko
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
gko::experimental::distributed::Vector::fill
void fill(ValueType value)
Fill the distributed vectors with a given value.
gko::experimental::distributed::Vector::compute_mean
void compute_mean(ptr_param< LinOp > result) const
Computes the column-wise mean of this (multi-)vector using a global reduction.
gko::experimental::distributed::Vector::create_with_config_of
static std::unique_ptr< Vector > create_with_config_of(ptr_param< const Vector > other)
Creates a distributed Vector with the same size and stride as another Vector.
gko::experimental::distributed::Vector::compute_absolute
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
gko::experimental::distributed::Vector::add_scaled
void add_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Adds b scaled by alpha to the vectors (aka: BLAS axpy).
gko::next_precision
typename detail::next_precision_impl< T >::type next_precision
Obtains the next type in the singly-linked precision list.
Definition: math.hpp:462
gko::experimental::distributed::Vector::compute_dot
void compute_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this (multi-)vector and b using a global reduction.
gko::experimental::distributed::Vector::compute_conj_dot
void compute_conj_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this (multi-)vector and conj(b) using a global reduction.
gko::experimental::distributed::Vector::compute_absolute_inplace
void compute_absolute_inplace() override
Compute absolute inplace on each element.
gko::experimental::distributed::Vector::create_const
static std::unique_ptr< const Vector > create_const(std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > global_size, std::unique_ptr< const local_vector_type > local_vector)
Creates a constant (immutable) distributed Vector from a constant local vector.
gko::experimental::distributed::Vector::get_imag
std::unique_ptr< real_type > get_imag() const
Creates new real vectors and extracts the imaginary part of the original vectors into that.
gko::experimental::distributed::Vector::compute_norm2
void compute_norm2(ptr_param< LinOp > result) const
Computes the Euclidean (L^2) norm of this (multi-)vector using a global reduction.
gko::experimental::distributed::Vector::get_const_local_values
const value_type * get_const_local_values() const
Returns a pointer to the array of local values of the multi-vector.
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:326
gko::experimental::distributed::Vector::inv_scale
void inv_scale(ptr_param< const LinOp > alpha)
Scales the vectors with the inverse of a scalar.
gko::experimental::distributed::Vector::sub_scaled
void sub_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Subtracts b scaled by alpha from the vectors (aka: BLAS axpy).
gko::LinOp::LinOp
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
gko::to_complex
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:345
gko::experimental::distributed::Vector::scale
void scale(ptr_param< const LinOp > alpha)
Scales the vectors with a scalar (aka: BLAS scal).