Ginkgo  Generated from pipelines/2216270019 branch based on develop. Ginkgo version 1.12.0
A numerical linear algebra library targeting many-core architectures
batch_dense.hpp
1 // SPDX-FileCopyrightText: 2017 - 2025 The Ginkgo authors
2 //
3 // SPDX-License-Identifier: BSD-3-Clause
4 
5 #ifndef GKO_PUBLIC_CORE_MATRIX_BATCH_DENSE_HPP_
6 #define GKO_PUBLIC_CORE_MATRIX_BATCH_DENSE_HPP_
7 
8 
9 #include <initializer_list>
10 #include <vector>
11 
12 #include <ginkgo/core/base/array.hpp>
13 #include <ginkgo/core/base/batch_lin_op.hpp>
14 #include <ginkgo/core/base/batch_multi_vector.hpp>
15 #include <ginkgo/core/base/executor.hpp>
16 #include <ginkgo/core/base/mtx_io.hpp>
17 #include <ginkgo/core/base/range_accessors.hpp>
18 #include <ginkgo/core/base/types.hpp>
19 #include <ginkgo/core/base/utils.hpp>
20 #include <ginkgo/core/matrix/dense.hpp>
21 
22 
23 namespace gko {
24 namespace batch {
25 namespace matrix {
26 
27 
47 template <typename ValueType = default_precision>
48 class Dense final : public EnableBatchLinOp<Dense<ValueType>>,
49 #if GINKGO_ENABLE_HALF || GINKGO_ENABLE_BFLOAT16
50  public ConvertibleTo<Dense<next_precision<ValueType, 2>>>,
51 #endif
52 #if GINKGO_ENABLE_HALF && GINKGO_ENABLE_BFLOAT16
53  public ConvertibleTo<Dense<next_precision<ValueType, 3>>>,
54 #endif
55  public ConvertibleTo<Dense<next_precision<ValueType>>> {
57  friend class Dense<to_complex<ValueType>>;
58  friend class Dense<previous_precision<ValueType>>;
59  GKO_ASSERT_SUPPORTED_VALUE_TYPE;
60 
61 public:
64 
65  using value_type = ValueType;
66  using index_type = int32;
69  using absolute_type = remove_complex<Dense>;
70  using complex_type = to_complex<Dense>;
71 
72  void convert_to(Dense<next_precision<ValueType>>* result) const override;
73 
74  void move_to(Dense<next_precision<ValueType>>* result) override;
75 
76 #if GINKGO_ENABLE_HALF || GINKGO_ENABLE_BFLOAT16
77  friend class Dense<previous_precision<ValueType, 2>>;
80 
81  void convert_to(Dense<next_precision<ValueType, 2>>* result) const override;
82 
83  void move_to(Dense<next_precision<ValueType, 2>>* result) override;
84 #endif
85 
86 #if GINKGO_ENABLE_HALF && GINKGO_ENABLE_BFLOAT16
87  friend class Dense<previous_precision<ValueType, 3>>;
90 
91  void convert_to(Dense<next_precision<ValueType, 3>>* result) const override;
92 
93  void move_to(Dense<next_precision<ValueType, 3>>* result) override;
94 #endif
95 
106  std::unique_ptr<unbatch_type> create_view_for_item(size_type item_id);
107 
111  std::unique_ptr<const unbatch_type> create_const_view_for_item(
112  size_type item_id) const;
113 
122  {
123  GKO_ASSERT(batch_id < this->get_num_batch_items());
124  return batch_id * this->get_common_size()[0] *
125  this->get_common_size()[1];
126  }
127 
133  value_type* get_values() noexcept { return values_.get_data(); }
134 
142  const value_type* get_const_values() const noexcept
143  {
144  return values_.get_const_data();
145  }
146 
158  value_type& at(size_type batch_id, size_type row, size_type col)
159  {
160  GKO_ASSERT(batch_id < this->get_num_batch_items());
161  return values_.get_data()[linearize_index(batch_id, row, col)];
162  }
163 
167  value_type at(size_type batch_id, size_type row, size_type col) const
168  {
169  GKO_ASSERT(batch_id < this->get_num_batch_items());
170  return values_.get_const_data()[linearize_index(batch_id, row, col)];
171  }
172 
187  ValueType& at(size_type batch_id, size_type idx) noexcept
188  {
189  GKO_ASSERT(batch_id < this->get_num_batch_items());
190  return values_.get_data()[linearize_index(batch_id, idx)];
191  }
192 
196  ValueType at(size_type batch_id, size_type idx) const noexcept
197  {
198  GKO_ASSERT(batch_id < this->get_num_batch_items());
199  return values_.get_const_data()[linearize_index(batch_id, idx)];
200  }
201 
210  value_type* get_values_for_item(size_type batch_id) noexcept
211  {
212  GKO_ASSERT(batch_id < this->get_num_batch_items());
213  return values_.get_data() + this->get_cumulative_offset(batch_id);
214  }
215 
223  const value_type* get_const_values_for_item(
224  size_type batch_id) const noexcept
225  {
226  GKO_ASSERT(batch_id < this->get_num_batch_items());
227  return values_.get_const_data() + this->get_cumulative_offset(batch_id);
228  }
229 
238  {
239  return values_.get_size();
240  }
241 
248  {
249  return this->get_num_stored_elements() / this->get_num_batch_items();
250  }
251 
260  static std::unique_ptr<Dense> create(
261  std::shared_ptr<const Executor> exec,
262  const batch_dim<2>& size = batch_dim<2>{});
263 
278  static std::unique_ptr<Dense> create(std::shared_ptr<const Executor> exec,
279  const batch_dim<2>& size,
280  array<value_type> values);
281 
286  template <typename InputValueType>
287  GKO_DEPRECATED(
288  "explicitly construct the gko::array argument instead of passing an"
289  "initializer list")
290  static std::unique_ptr<Dense> create(
291  std::shared_ptr<const Executor> exec, const batch_dim<2>& size,
292  std::initializer_list<InputValueType> values)
293  {
294  return create(exec, size, array<value_type>{exec, std::move(values)});
295  }
296 
311  static std::unique_ptr<const Dense> create_const(
312  std::shared_ptr<const Executor> exec, const batch_dim<2>& sizes,
313  gko::detail::const_array_view<ValueType>&& values);
314 
324 
339 
345 
351  const Dense* apply(ptr_param<const MultiVector<value_type>> alpha,
355 
362  void scale(const array<value_type>& row_scale,
363  const array<value_type>& col_scale);
364 
373  void scale_add(ptr_param<const MultiVector<value_type>> alpha,
375 
385  ptr_param<const MultiVector<value_type>> beta);
386 
387 private:
388  inline size_type compute_num_elems(const batch_dim<2>& size)
389  {
390  return size.get_num_batch_items() * size.get_common_size()[0] *
391  size.get_common_size()[1];
392  }
393 
394  Dense(std::shared_ptr<const Executor> exec,
395  const batch_dim<2>& size = batch_dim<2>{});
396 
397  Dense(std::shared_ptr<const Executor> exec, const batch_dim<2>& size,
398  array<value_type> values);
399 
400  void apply_impl(const MultiVector<value_type>* b,
401  MultiVector<value_type>* x) const;
402 
403  void apply_impl(const MultiVector<value_type>* alpha,
404  const MultiVector<value_type>* b,
405  const MultiVector<value_type>* beta,
406  MultiVector<value_type>* x) const;
407 
408  size_type linearize_index(size_type batch, size_type row,
409  size_type col) const noexcept
410  {
411  return this->get_cumulative_offset(batch) +
412  row * this->get_size().get_common_size()[1] + col;
413  }
414 
415  size_type linearize_index(size_type batch, size_type idx) const noexcept
416  {
417  return linearize_index(batch, idx / this->get_common_size()[1],
418  idx % this->get_common_size()[1]);
419  }
420 
421  array<value_type> values_;
422 };
423 
424 
425 } // namespace matrix
426 } // namespace batch
427 } // namespace gko
428 
429 
430 #endif // GKO_PUBLIC_CORE_MATRIX_BATCH_DENSE_HPP_
gko::batch::EnableBatchLinOp
The EnableBatchLinOp mixin can be used to provide sensible default implementations of the majority of...
Definition: batch_lin_op.hpp:250
gko::batch_dim::get_num_batch_items
size_type get_num_batch_items() const
Get the number of batch items stored.
Definition: batch_dim.hpp:36
gko::batch::matrix::Dense::get_values_for_item
value_type * get_values_for_item(size_type batch_id) noexcept
Returns a pointer to the array of values of the matrix for a specific batch item.
Definition: batch_dense.hpp:210
gko::batch::matrix::Dense::get_const_values_for_item
const value_type * get_const_values_for_item(size_type batch_id) const noexcept
Returns a pointer to the array of values of the matrix for a specific batch item.
Definition: batch_dense.hpp:223
gko::batch_dim::get_common_size
dim< dimensionality, dimension_type > get_common_size() const
Get the common size of the batch items.
Definition: batch_dim.hpp:43
gko::batch::matrix::Dense::scale
void scale(const array< value_type > &row_scale, const array< value_type > &col_scale)
Performs in-place row and column scaling for this matrix.
gko::batch::matrix::Dense::add_scaled_identity
void add_scaled_identity(ptr_param< const MultiVector< value_type >> alpha, ptr_param< const MultiVector< value_type >> beta)
Performs the operation this = alpha*I + beta*this.
gko::batch::matrix::Dense::get_num_elements_per_item
size_type get_num_elements_per_item() const noexcept
Returns the number of stored elements in each batch item.
Definition: batch_dense.hpp:247
gko::batch::matrix::Dense::at
ValueType & at(size_type batch_id, size_type idx) noexcept
Returns a single element for a particular batch item.
Definition: batch_dense.hpp:187
gko::matrix::Dense
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:28
gko::batch::BatchLinOp
Definition: batch_lin_op.hpp:59
gko::batch::matrix::Dense::create_const
static std::unique_ptr< const Dense > create_const(std::shared_ptr< const Executor > exec, const batch_dim< 2 > &sizes, gko::detail::const_array_view< ValueType > &&values)
Creates a constant (immutable) batch dense matrix from a constant array.
gko::batch::matrix::Dense::at
value_type at(size_type batch_id, size_type row, size_type col) const
Returns a single element for a particular batch item.
Definition: batch_dense.hpp:167
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:90
gko::batch::matrix::Dense::at
value_type & at(size_type batch_id, size_type row, size_type col)
Returns a single element for a particular batch item.
Definition: batch_dense.hpp:158
gko::batch::MultiVector
MultiVector stores multiple vectors in a batched fashion and is useful for batched operations.
Definition: batch_multi_vector.hpp:52
gko::batch::matrix::Dense::get_const_values
const value_type * get_const_values() const noexcept
Returns a pointer to the array of values of the multi-vector.
Definition: batch_dense.hpp:142
gko
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
gko::batch::matrix::Dense::apply
Dense * apply(ptr_param< const MultiVector< value_type >> b, ptr_param< MultiVector< value_type >> x)
Apply the matrix to a multi-vector.
gko::array< value_type >
gko::batch::matrix::Dense::at
ValueType at(size_type batch_id, size_type idx) const noexcept
Returns a single element for a particular batch item.
Definition: batch_dense.hpp:196
gko::batch::matrix::Dense::create_const_view_for_item
std::unique_ptr< const unbatch_type > create_const_view_for_item(size_type item_id) const
Creates a mutable view (of gko::matrix::Dense type) of one item of the batch::matrix::Dense<value_typ...
gko::batch_dim< 2 >
gko::batch::matrix::Dense::create_view_for_item
std::unique_ptr< unbatch_type > create_view_for_item(size_type item_id)
Creates a mutable view (of gko::matrix::Dense type) of one item of the batch::matrix::Dense<value_typ...
gko::ptr_param
This class is used for function parameters in the place of raw pointers.
Definition: utils_helper.hpp:41
gko::array::get_data
value_type * get_data() noexcept
Returns a pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:687
gko::batch::matrix::Dense::create
static std::unique_ptr< Dense > create(std::shared_ptr< const Executor > exec, const batch_dim< 2 > &size=batch_dim< 2 >{})
Creates an uninitialized Dense matrix of the specified size.
gko::batch::matrix::Dense::get_num_stored_elements
size_type get_num_stored_elements() const noexcept
Returns the number of elements explicitly stored in the batch matrix, cumulative across all the batch...
Definition: batch_dense.hpp:237
gko::next_precision
typename detail::find_precision_impl< T, step >::type next_precision
Obtains the next move type of T in the singly-linked precision corresponding bfloat16/half.
Definition: math.hpp:466
gko::previous_precision
typename detail::find_precision_impl< T, -step >::type previous_precision
Obtains the previous move type of T in the singly-linked precision corresponding bfloat16/half.
Definition: math.hpp:473
gko::ConvertibleTo
ConvertibleTo interface is used to mark that the implementer can be converted to the object of Result...
Definition: polymorphic_object.hpp:479
gko::int32
std::int32_t int32
32-bit signed integral type.
Definition: types.hpp:107
gko::Executor
The first step in using the Ginkgo library consists of creating an executor.
Definition: executor.hpp:615
gko::batch::matrix::Dense::get_values
value_type * get_values() noexcept
Returns a pointer to the array of values of the multi-vector.
Definition: batch_dense.hpp:133
gko::array::get_const_data
const value_type * get_const_data() const noexcept
Returns a constant pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:696
gko::batch::matrix::Dense
Dense is a batch matrix format which explicitly stores all values of the matrix in each of the batche...
Definition: batch_dense.hpp:48
gko::array::get_size
size_type get_size() const noexcept
Returns the number of elements in the array.
Definition: array.hpp:670
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:264
gko::batch::matrix::Dense::get_cumulative_offset
size_type get_cumulative_offset(size_type batch_id) const
Get the cumulative storage size offset.
Definition: batch_dense.hpp:121
gko::batch::matrix::Dense::scale_add
void scale_add(ptr_param< const MultiVector< value_type >> alpha, ptr_param< const batch::matrix::Dense< value_type >> b)
Performs the operation this = alpha*this + b.
gko::to_complex
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:283
gko::EnablePolymorphicObject
This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a ne...
Definition: polymorphic_object.hpp:667