Ginkgo  Generated from pipelines/1589998975 branch based on develop. Ginkgo version 1.10.0
A numerical linear algebra library targeting many-core architectures
The ginkgo-ranges program

The ranges and accessor example..

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

Introduction

About the example

The commented program

a utility function for printing the factorization on screen

template <typename Accessor>
void print_lu(const gko::range<Accessor>& A)
{
std::cout << std::setprecision(2) << std::fixed;
std::cout << "L = [";
for (int i = 0; i < A.length(0); ++i) {
std::cout << "\n ";
for (int j = 0; j < A.length(1); ++j) {
std::cout << (i > j ? A(i, j) : (i == j) * 1.) << " ";
}
}
std::cout << "\n]\n\nU = [";
for (int i = 0; i < A.length(0); ++i) {
std::cout << "\n ";
for (int j = 0; j < A.length(1); ++j) {
std::cout << (i <= j ? A(i, j) : 0.) << " ";
}
}
std::cout << "\n]" << std::endl;
}
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;

Print version information

std::cout << gko::version_info::get() << std::endl;

Create some test data, add some padding just to demonstrate how to use it with ranges. clang-format off

ValueType data[] = {
2., 4., 5., -1.0,
4., 11., 12., -1.0,
6., 24., 24., -1.0
};

clang-format on

Create a 3-by-3 range, with a 2D row-major accessor using data as the underlying storage. Set the stride (a.k.a. "LDA") to 4.

use the LU factorization routine defined above to factorize the matrix

factorize(A);

print the factorization on screen

print_lu(A);
}

Results

This is the expected output:

L = [
1.00 0.00 0.00
2.00 1.00 0.00
3.00 4.00 1.00
]
U = [
2.00 4.00 5.00
0.00 3.00 2.00
0.00 0.00 1.00
]

Comments about programming and debugging

The plain program

#include <iomanip>
#include <iostream>
#include <ginkgo/ginkgo.hpp>
template <typename Accessor>
void factorize(const gko::range<Accessor>& A)
{
using gko::span;
assert(A.length(0) == A.length(1));
for (gko::size_type i = 0; i < A.length(0) - 1; ++i) {
const auto trail = span{i + 1, A.length(0)};
A(trail, i) = A(trail, i) / A(i, i);
A(trail, trail) = A(trail, trail) - mmul(A(trail, i), A(i, trail));
}
}
template <typename Accessor>
void print_lu(const gko::range<Accessor>& A)
{
std::cout << std::setprecision(2) << std::fixed;
std::cout << "L = [";
for (int i = 0; i < A.length(0); ++i) {
std::cout << "\n ";
for (int j = 0; j < A.length(1); ++j) {
std::cout << (i > j ? A(i, j) : (i == j) * 1.) << " ";
}
}
std::cout << "\n]\n\nU = [";
for (int i = 0; i < A.length(0); ++i) {
std::cout << "\n ";
for (int j = 0; j < A.length(1); ++j) {
std::cout << (i <= j ? A(i, j) : 0.) << " ";
}
}
std::cout << "\n]" << std::endl;
}
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
std::cout << gko::version_info::get() << std::endl;
ValueType data[] = {
2., 4., 5., -1.0,
4., 11., 12., -1.0,
6., 24., 24., -1.0
};
auto A =
factorize(A);
print_lu(A);
}
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:89
gko::range
A range is a multidimensional view of the memory.
Definition: range.hpp:297
gko::version_info::get
static const version_info & get()
Returns an instance of version_info.
Definition: version.hpp:139
gko::span
A span is a lightweight structure used to create sub-ranges from other ranges.
Definition: range.hpp:46
gko::range::length
constexpr size_type length(size_type dimension) const
Returns the length of the specified dimension of the range.
Definition: range.hpp:400