Ginkgo  Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
Public Types | Public Member Functions | Static Public Member Functions | Friends | List of all members
gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType > Class Template Reference

The Matrix class defines a (MPI-)distributed matrix. More...

#include <ginkgo/core/distributed/matrix.hpp>

Inheritance diagram for gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >:
[legend]
Collaboration diagram for gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >:
[legend]

Public Types

using value_type = ValueType
 
using index_type = GlobalIndexType
 
using local_index_type = LocalIndexType
 
using global_index_type = GlobalIndexType
 
using global_vector_type = gko::experimental::distributed::Vector< ValueType >
 
using local_vector_type = typename global_vector_type::local_vector_type
 
- Public Types inherited from gko::EnablePolymorphicAssignment< Matrix< ValueType, LocalIndexType, GlobalIndexType > >
using result_type = Matrix< ValueType, LocalIndexType, GlobalIndexType >
 
- Public Types inherited from gko::ConvertibleTo< Matrix< ValueType, LocalIndexType, GlobalIndexType > >
using result_type = Matrix< ValueType, LocalIndexType, GlobalIndexType >
 
- Public Types inherited from gko::ConvertibleTo< Matrix< next_precision< ValueType >, LocalIndexType, GlobalIndexType > >
using result_type = Matrix< next_precision< ValueType >, LocalIndexType, GlobalIndexType >
 

Public Member Functions

void convert_to (Matrix< next_precision< value_type >, local_index_type, global_index_type > *result) const override
 
void move_to (Matrix< next_precision< value_type >, local_index_type, global_index_type > *result) override
 
void read_distributed (const device_matrix_data< value_type, global_index_type > &data, std::shared_ptr< const Partition< local_index_type, global_index_type >> partition)
 Reads a square matrix from the device_matrix_data structure and a global partition. More...
 
void read_distributed (const matrix_data< value_type, global_index_type > &data, std::shared_ptr< const Partition< local_index_type, global_index_type >> partition)
 Reads a square matrix from the matrix_data structure and a global partition. More...
 
void read_distributed (const device_matrix_data< value_type, global_index_type > &data, std::shared_ptr< const Partition< local_index_type, global_index_type >> row_partition, std::shared_ptr< const Partition< local_index_type, global_index_type >> col_partition)
 Reads a matrix from the device_matrix_data structure, a global row partition, and a global column partition. More...
 
void read_distributed (const matrix_data< value_type, global_index_type > &data, std::shared_ptr< const Partition< local_index_type, global_index_type >> row_partition, std::shared_ptr< const Partition< local_index_type, global_index_type >> col_partition)
 Reads a matrix from the matrix_data structure, a global row partition, and a global column partition. More...
 
std::shared_ptr< const LinOpget_local_matrix () const
 Get read access to the stored local matrix. More...
 
std::shared_ptr< const LinOpget_non_local_matrix () const
 Get read access to the stored non-local matrix. More...
 
 Matrix (const Matrix &other)
 Copy constructs a Matrix. More...
 
 Matrix (Matrix &&other) noexcept
 Move constructs a Matrix. More...
 
Matrixoperator= (const Matrix &other)
 Copy assigns a Matrix. More...
 
Matrixoperator= (Matrix &&other)
 Move assigns a Matrix. More...
 
- Public Member Functions inherited from gko::experimental::EnableDistributedLinOp< Matrix< ValueType, LocalIndexType, GlobalIndexType > >
const Matrix< ValueType, LocalIndexType, GlobalIndexType > * apply (ptr_param< const LinOp > b, ptr_param< LinOp > x) const
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * apply (ptr_param< const LinOp > b, ptr_param< LinOp > x)
 
const Matrix< ValueType, LocalIndexType, GlobalIndexType > * apply (ptr_param< const LinOp > alpha, ptr_param< const LinOp > b, ptr_param< const LinOp > beta, ptr_param< LinOp > x) const
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * apply (ptr_param< const LinOp > alpha, ptr_param< const LinOp > b, ptr_param< const LinOp > beta, ptr_param< LinOp > x)
 
- Public Member Functions inherited from gko::EnableAbstractPolymorphicObject< Matrix< ValueType, LocalIndexType, GlobalIndexType >, LinOp >
std::unique_ptr< Matrix< ValueType, LocalIndexType, GlobalIndexType > > create_default (std::shared_ptr< const Executor > exec) const
 
std::unique_ptr< Matrix< ValueType, LocalIndexType, GlobalIndexType > > create_default () const
 
std::unique_ptr< Matrix< ValueType, LocalIndexType, GlobalIndexType > > clone (std::shared_ptr< const Executor > exec) const
 
std::unique_ptr< Matrix< ValueType, LocalIndexType, GlobalIndexType > > clone () const
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * copy_from (const PolymorphicObject *other)
 
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, Matrix< ValueType, LocalIndexType, GlobalIndexType > > * copy_from (std::unique_ptr< Derived > &&other)
 
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, Matrix< ValueType, LocalIndexType, GlobalIndexType > > * copy_from (const std::unique_ptr< Derived > &other)
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * copy_from (const std::shared_ptr< const PolymorphicObject > &other)
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * move_from (ptr_param< PolymorphicObject > other)
 
Matrix< ValueType, LocalIndexType, GlobalIndexType > * clear ()
 
- Public Member Functions inherited from gko::LinOp
LinOpapply (ptr_param< const LinOp > b, ptr_param< LinOp > x)
 Applies a linear operator to a vector (or a sequence of vectors). More...
 
const LinOpapply (ptr_param< const LinOp > b, ptr_param< LinOp > x) const
 
LinOpapply (ptr_param< const LinOp > alpha, ptr_param< const LinOp > b, ptr_param< const LinOp > beta, ptr_param< LinOp > x)
 Performs the operation x = alpha * op(b) + beta * x. More...
 
const LinOpapply (ptr_param< const LinOp > alpha, ptr_param< const LinOp > b, ptr_param< const LinOp > beta, ptr_param< LinOp > x) const
 
const dim< 2 > & get_size () const noexcept
 Returns the size of the operator. More...
 
virtual bool apply_uses_initial_guess () const
 Returns true if the linear operator uses the data given in x as an initial guess. More...
 
LinOpoperator= (const LinOp &)=default
 Copy-assigns a LinOp. More...
 
LinOpoperator= (LinOp &&other)
 Move-assigns a LinOp. More...
 
 LinOp (const LinOp &)=default
 Copy-constructs a LinOp. More...
 
 LinOp (LinOp &&other)
 Move-constructs a LinOp. More...
 
- Public Member Functions inherited from gko::EnableAbstractPolymorphicObject< LinOp >
std::unique_ptr< LinOpcreate_default (std::shared_ptr< const Executor > exec) const
 
std::unique_ptr< LinOpcreate_default () const
 
std::unique_ptr< LinOpclone (std::shared_ptr< const Executor > exec) const
 
std::unique_ptr< LinOpclone () const
 
LinOpcopy_from (const PolymorphicObject *other)
 
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, LinOp > * copy_from (std::unique_ptr< Derived > &&other)
 
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, LinOp > * copy_from (const std::unique_ptr< Derived > &other)
 
LinOpcopy_from (const std::shared_ptr< const PolymorphicObject > &other)
 
LinOpmove_from (ptr_param< PolymorphicObject > other)
 
LinOpclear ()
 
- Public Member Functions inherited from gko::PolymorphicObject
PolymorphicObjectoperator= (const PolymorphicObject &)
 
std::unique_ptr< PolymorphicObjectcreate_default (std::shared_ptr< const Executor > exec) const
 Creates a new "default" object of the same dynamic type as this object. More...
 
std::unique_ptr< PolymorphicObjectcreate_default () const
 Creates a new "default" object of the same dynamic type as this object. More...
 
std::unique_ptr< PolymorphicObjectclone (std::shared_ptr< const Executor > exec) const
 Creates a clone of the object. More...
 
std::unique_ptr< PolymorphicObjectclone () const
 Creates a clone of the object. More...
 
PolymorphicObjectcopy_from (const PolymorphicObject *other)
 Copies another object into this object. More...
 
template<typename Derived , typename Deleter >
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, PolymorphicObject > * copy_from (std::unique_ptr< Derived, Deleter > &&other)
 Moves another object into this object. More...
 
template<typename Derived , typename Deleter >
std::enable_if_t< std::is_base_of< PolymorphicObject, std::decay_t< Derived > >::value, PolymorphicObject > * copy_from (const std::unique_ptr< Derived, Deleter > &other)
 Copies another object into this object. More...
 
PolymorphicObjectcopy_from (const std::shared_ptr< const PolymorphicObject > &other)
 Copies another object into this object. More...
 
PolymorphicObjectmove_from (ptr_param< PolymorphicObject > other)
 Moves another object into this object. More...
 
PolymorphicObjectclear ()
 Transforms the object into its default state. More...
 
std::shared_ptr< const Executorget_executor () const noexcept
 Returns the Executor of the object. More...
 
- Public Member Functions inherited from gko::log::EnableLogging< PolymorphicObject >
void add_logger (std::shared_ptr< const Logger > logger) override
 
void remove_logger (const Logger *logger) override
 
void remove_logger (ptr_param< const Logger > logger)
 
const std::vector< std::shared_ptr< const Logger > > & get_loggers () const override
 
void clear_loggers () override
 
- Public Member Functions inherited from gko::log::Loggable
void remove_logger (ptr_param< const Logger > logger)
 
- Public Member Functions inherited from gko::EnablePolymorphicAssignment< Matrix< ValueType, LocalIndexType, GlobalIndexType > >
void convert_to (result_type *result) const override
 Converts the implementer to an object of type result_type. More...
 
void move_to (result_type *result) override
 Converts the implementer to an object of type result_type by moving data from this object. More...
 
- Public Member Functions inherited from gko::ConvertibleTo< Matrix< ValueType, LocalIndexType, GlobalIndexType > >
void convert_to (ptr_param< result_type > result) const
 
void move_to (ptr_param< result_type > result)
 
- Public Member Functions inherited from gko::ConvertibleTo< Matrix< next_precision< ValueType >, LocalIndexType, GlobalIndexType > >
virtual void convert_to (result_type *result) const=0
 Converts the implementer to an object of type result_type. More...
 
void convert_to (ptr_param< result_type > result) const
 
virtual void move_to (result_type *result)=0
 Converts the implementer to an object of type result_type by moving data from this object. More...
 
void move_to (ptr_param< result_type > result)
 
- Public Member Functions inherited from gko::experimental::distributed::DistributedBase
 DistributedBase (const DistributedBase &other)=default
 
 DistributedBase (DistributedBase &&other)=default
 
DistributedBaseoperator= (const DistributedBase &)
 Copy assignment that doesn't change the used mpi::communicator. More...
 
DistributedBaseoperator= (DistributedBase &&) noexcept
 Move assignment that doesn't change the used mpi::communicator. More...
 
mpi::communicator get_communicator () const
 Access the used mpi::communicator. More...
 

Static Public Member Functions

static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm)
 Creates an empty distributed matrix. More...
 
template<typename MatrixType , typename = std::enable_if_t<detail::is_matrix_type_builder< MatrixType, ValueType, LocalIndexType>::value>>
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, MatrixType matrix_template)
 Creates an empty distributed matrix with specified type for local matrices. More...
 
template<typename LocalMatrixType , typename NonLocalMatrixType , typename = std::enable_if_t< detail::is_matrix_type_builder<LocalMatrixType, ValueType, LocalIndexType>::value && detail::is_matrix_type_builder<NonLocalMatrixType, ValueType, LocalIndexType>::value>>
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, LocalMatrixType local_matrix_template, NonLocalMatrixType non_local_matrix_template)
 Creates an empty distributed matrix with specified types for the local matrix and the non-local matrix. More...
 
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, ptr_param< const LinOp > matrix_template)
 Creates an empty distributed matrix with specified type for local matrices. More...
 
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, ptr_param< const LinOp > local_matrix_template, ptr_param< const LinOp > non_local_matrix_template)
 Creates an empty distributed matrix with specified types for the local matrix and the non-local matrix. More...
 
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > size, std::shared_ptr< LinOp > local_linop)
 Creates a local-only distributed matrix with existent LinOp. More...
 
static std::unique_ptr< Matrixcreate (std::shared_ptr< const Executor > exec, mpi::communicator comm, dim< 2 > size, std::shared_ptr< LinOp > local_linop, std::shared_ptr< LinOp > non_local_linop, std::vector< comm_index_type > recv_sizes, std::vector< comm_index_type > recv_offsets, array< local_index_type > recv_gather_idxs)
 Creates distributed matrix with existent local and non-local LinOp and the corresponding mapping to collect the non-local data from the other ranks. More...
 

Friends

class EnableDistributedPolymorphicObject< Matrix, LinOp >
 
class Matrix< next_precision< ValueType >, LocalIndexType, GlobalIndexType >
 
class multigrid::Pgm< ValueType, LocalIndexType >
 

Detailed Description

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
class gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >

The Matrix class defines a (MPI-)distributed matrix.

The matrix is stored in a row-wise distributed format. Each process owns a specific set of rows, where the assignment of rows is defined by a row Partition. The following depicts the distribution of global rows according to their assigned part-id (which will usually be the owning process id):

Part-Id Global Rows Part-Id Local Rows
0 | .. 1 2 .. .. .. | 0 | .. 1 2 .. .. .. |
1 | 3 4 .. .. .. .. | | 13 .. .. .. 14 .. |
2 | .. 5 6 .. 7 .. | ----> 1 | 3 4 .. .. .. .. |
2 | .. .. .. 8 .. 9 | ----> | .. .. .. 10 11 12 |
1 | .. .. .. 10 11 12 | 2 | .. 5 6 .. 7 .. |
0 | 13 .. .. .. 14 .. | | .. .. .. 8 .. 9 |

The local rows are further split into two matrices on each process. One matrix, called local, contains only entries from columns that are also owned by the process, while the other one, called non_local, contains entries from columns that are not owned by the process. The non-local matrix is stored in a compressed format, where empty columns are discarded and the remaining columns are renumbered. This splitting is depicted in the following:

Part-Id Global Local Non-Local
0 | .. 1 ! 2 .. ! .. .. | | .. 1 | | 2 |
0 | 3 4 ! .. .. ! .. .. | | 3 4 | | .. |
|-----------------------|
1 | .. 5 ! 6 .. ! 7 .. | ----> | 6 .. | | 5 7 .. |
1 | .. .. ! .. 8 ! .. 9 | ----> | 8 .. | | .. .. 9 |
|-----------------------|
2 | .. .. ! .. 10 ! 11 12 | | 11 12 | | .. 10 |
2 | 13 .. ! .. .. ! 14 .. | | 14 .. | | 13 .. |

This uses the same ownership of the columns as for the rows. Additionally, the ownership of the columns may be explicitly defined with an second column partition. If that is not provided, the same row partition will be used for the columns. Using a column partition also allows to create non-square matrices, like the one below:

Part-Id Global Local Non-Local
P_R/P_C 2 2 0 1
0 | .. 1 2 .. | | 2 | | 1 .. |
0 | 3 4 .. .. | | .. | | 3 4 |
|-------------|
1 | .. 5 6 .. | ----> | .. | | 6 5 |
1 | .. .. .. 8 | ----> | 8 | | .. .. |
|-------------|
2 | .. .. .. 10 | | .. .. | | 10 |
2 | 13 .. .. .. | | 13 .. | | .. |

Here P_R denotes the row partition and P_C denotes the column partition.

The Matrix should be filled using the read_distributed method, e.g.

auto mat = Matrix<...>::create(exec, comm);
mat->read_distributed(matrix_data, part);

or if different partitions for the rows and columns are used:

auto mat = Matrix<...>::create(exec, comm);
mat->read_distributed(matrix_data, row_part, col_part);

This will set the dimensions of the global and local matrices automatically by deducing the sizes from the partitions.

By default the Matrix type uses Csr for both stored matrices. It is possible to explicitly change the datatype for the stored matrices, with the constraint that the new type should implement the LinOp and ReadableFromMatrixData interface. The type can be set by:

exec, comm,
Ell<ValueType, LocalIndexType>::create(exec).get(),
Coo<ValueType, LocalIndexType>::create(exec).get());

Alternatively, the helper function with_matrix_type can be used:

exec, comm,
with_matrix_type<Ell>(),
with_matrix_type<Coo>());
See also
with_matrix_type

The Matrix LinOp supports the following operations:

experimental::distributed::Matrix *A; // distributed matrix
experimental::distributed::Vector *b, *x; // distributed multi-vectors
matrix::Dense *alpha, *beta; // scalars of dimension 1x1
// Applying to distributed multi-vectors computes an SpMV/SpMM product
A->apply(b, x) // x = A*b
A->apply(alpha, b, beta, x) // x = alpha*A*b + beta*x
Template Parameters
ValueTypeThe underlying value type.
LocalIndexTypeThe index type used by the local matrices.
GlobalIndexTypeThe type for global indices.

Constructor & Destructor Documentation

◆ Matrix() [1/2]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::Matrix ( const Matrix< ValueType, LocalIndexType, GlobalIndexType > &  other)

Copy constructs a Matrix.

Parameters
otherMatrix to copy from.

◆ Matrix() [2/2]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::Matrix ( Matrix< ValueType, LocalIndexType, GlobalIndexType > &&  other)
noexcept

Move constructs a Matrix.

Parameters
otherMatrix to move from.

Member Function Documentation

◆ create() [1/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm 
)
static

Creates an empty distributed matrix.

Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix. The default is the MPI_COMM_WORLD.
Returns
A smart pointer to the newly created matrix.

Referenced by gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create().

◆ create() [2/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
dim< 2 >  size,
std::shared_ptr< LinOp local_linop 
)
static

Creates a local-only distributed matrix with existent LinOp.

Note
It use the input to build up the distributed matrix
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
sizethe global size
local_linopthe local linop
Returns
A smart pointer to the newly created matrix.

◆ create() [3/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
dim< 2 >  size,
std::shared_ptr< LinOp local_linop,
std::shared_ptr< LinOp non_local_linop,
std::vector< comm_index_type recv_sizes,
std::vector< comm_index_type recv_offsets,
array< local_index_type >  recv_gather_idxs 
)
static

Creates distributed matrix with existent local and non-local LinOp and the corresponding mapping to collect the non-local data from the other ranks.

Note
It use the input to build up the distributed matrix
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
sizethe global size
local_linopthe local linop
non_local_linopthe non-local linop
recv_sizesthe size of non-local receiver
recv_offsetthe offset of non-local receiver
recv_gather_idxsthe gathering index of non-local receiver
Returns
A smart pointer to the newly created matrix.

◆ create() [4/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
template<typename LocalMatrixType , typename NonLocalMatrixType , typename = std::enable_if_t< detail::is_matrix_type_builder<LocalMatrixType, ValueType, LocalIndexType>::value && detail::is_matrix_type_builder<NonLocalMatrixType, ValueType, LocalIndexType>::value>>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
LocalMatrixType  local_matrix_template,
NonLocalMatrixType  non_local_matrix_template 
)
inlinestatic

Creates an empty distributed matrix with specified types for the local matrix and the non-local matrix.

Note
This is mainly a convenience wrapper for Matrix(std::shared_ptr<const Executor>, mpi::communicator, const LinOp*, const LinOp*)
Template Parameters
LocalMatrixTypeA type that has a create<ValueType, IndexType>(exec) function to create a smart pointer of a type derived from LinOp and ReadableFromMatrixData.
See also
with_matrix_type
Template Parameters
NonLocalMatrixTypeA (possible different) type with the same constraints as LocalMatrixType.
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
local_matrix_templatethe local matrix will be constructed with the same type as create returns. It should be the return value of make_matrix_template.
non_local_matrix_templatethe non-local matrix will be constructed with the same type as create returns. It should be the return value of make_matrix_template.
Returns
A smart pointer to the newly created matrix.

References gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create().

◆ create() [5/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
template<typename MatrixType , typename = std::enable_if_t<detail::is_matrix_type_builder< MatrixType, ValueType, LocalIndexType>::value>>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
MatrixType  matrix_template 
)
inlinestatic

Creates an empty distributed matrix with specified type for local matrices.

Note
This is mainly a convenience wrapper for Matrix(std::shared_ptr<const Executor>, mpi::communicator, const LinOp*)
Template Parameters
MatrixTypeA type that has a create<ValueType, IndexType>(exec) function to create a smart pointer of a type derived from LinOp and ReadableFromMatrixData.
See also
with_matrix_type
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
matrix_templatethe local matrices will be constructed with the same type as create returns. It should be the return value of make_matrix_template.
Returns
A smart pointer to the newly created matrix.

References gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create().

◆ create() [6/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
ptr_param< const LinOp local_matrix_template,
ptr_param< const LinOp non_local_matrix_template 
)
static

Creates an empty distributed matrix with specified types for the local matrix and the non-local matrix.

Note
It internally clones the passed in local_matrix_template and non_local_matrix_template. Therefore, those LinOps should be empty.
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
local_matrix_templatethe local matrix will be constructed with the same runtime type.
non_local_matrix_templatethe non-local matrix will be constructed with the same runtime type.
Returns
A smart pointer to the newly created matrix.

◆ create() [7/7]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
static std::unique_ptr<Matrix> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::create ( std::shared_ptr< const Executor exec,
mpi::communicator  comm,
ptr_param< const LinOp matrix_template 
)
static

Creates an empty distributed matrix with specified type for local matrices.

Note
It internally clones the passed in matrix_template. Therefore, the LinOp should be empty.
Parameters
execExecutor associated with this matrix.
commCommunicator associated with this matrix.
matrix_templatethe local matrices will be constructed with the same runtime type.
Returns
A smart pointer to the newly created matrix.

◆ get_local_matrix()

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
std::shared_ptr<const LinOp> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::get_local_matrix ( ) const
inline

Get read access to the stored local matrix.

Returns
Shared pointer to the stored local matrix

◆ get_non_local_matrix()

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
std::shared_ptr<const LinOp> gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::get_non_local_matrix ( ) const
inline

Get read access to the stored non-local matrix.

Returns
Shared pointer to the stored non-local matrix

◆ operator=() [1/2]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
Matrix& gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::operator= ( const Matrix< ValueType, LocalIndexType, GlobalIndexType > &  other)

Copy assigns a Matrix.

Parameters
otherMatrix to copy from, has to have a communicator of the same size as this.
Returns
this.

◆ operator=() [2/2]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
Matrix& gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::operator= ( Matrix< ValueType, LocalIndexType, GlobalIndexType > &&  other)

Move assigns a Matrix.

Parameters
otherMatrix to move from, has to have a communicator of the same size as this.
Returns
this.

◆ read_distributed() [1/4]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
void gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::read_distributed ( const device_matrix_data< value_type, global_index_type > &  data,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  partition 
)

Reads a square matrix from the device_matrix_data structure and a global partition.

The global size of the final matrix is inferred from the size of the partition. Both the number of rows and columns of the device_matrix_data are ignored.

Note
The matrix data can contain entries for rows other than those owned by the process. Entries for those rows are discarded.
Parameters
dataThe device_matrix_data structure.
partitionThe global row and column partition.
Returns
the index_map induced by the partitions and the matrix structure

◆ read_distributed() [2/4]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
void gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::read_distributed ( const device_matrix_data< value_type, global_index_type > &  data,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  row_partition,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  col_partition 
)

Reads a matrix from the device_matrix_data structure, a global row partition, and a global column partition.

The global size of the final matrix is inferred from the size of the row partition and the size of the column partition. Both the number of rows and columns of the device_matrix_data are ignored.

Note
The matrix data can contain entries for rows other than those owned by the process. Entries for those rows are discarded.
Parameters
dataThe device_matrix_data structure.
row_partitionThe global row partition.
col_partitionThe global col partition.
Returns
the index_map induced by the partitions and the matrix structure

◆ read_distributed() [3/4]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
void gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::read_distributed ( const matrix_data< value_type, global_index_type > &  data,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  partition 
)

Reads a square matrix from the matrix_data structure and a global partition.

See also
read_distributed
Note
For efficiency it is advised to use the device_matrix_data overload.

◆ read_distributed() [4/4]

template<typename ValueType = default_precision, typename LocalIndexType = int32, typename GlobalIndexType = int64>
void gko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType >::read_distributed ( const matrix_data< value_type, global_index_type > &  data,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  row_partition,
std::shared_ptr< const Partition< local_index_type, global_index_type >>  col_partition 
)

Reads a matrix from the matrix_data structure, a global row partition, and a global column partition.

See also
read_distributed
Note
For efficiency it is advised to use the device_matrix_data overload.

The documentation for this class was generated from the following file:
gko::experimental::distributed::Matrix::create
static std::unique_ptr< Matrix > create(std::shared_ptr< const Executor > exec, mpi::communicator comm)
Creates an empty distributed matrix.
gko::experimental::distributed::Partition::build_from_mapping
static std::unique_ptr< Partition > build_from_mapping(std::shared_ptr< const Executor > exec, const array< comm_index_type > &mapping, comm_index_type num_parts)
Builds a partition from a given mapping global_index -> part_id.