Ginkgo  Generated from pipelines/1554403166 branch based on develop. Ginkgo version 1.9.0
A numerical linear algebra library targeting many-core architectures
The external-lib-interfacing program

The external library(deal.II) interfacing example..

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

Introduction

About the example

The commented program

#include <deal.II/base/function.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_out.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/lac/constraint_matrix.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/lac/solver_bicgstab.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/vector.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/vector_tools.h>

The following two files provide classes and information for multithreaded programs. In the first one, the classes and functions are declared which we need to do assembly in parallel (i.e. the WorkStream namespace). The second file has a class MultithreadInfo which can be used to query the number of processors in your system, which is often useful when deciding how many threads to start in parallel.

#include <deal.II/base/multithread_info.h>
#include <deal.II/base/work_stream.h>

The next new include file declares a base class TensorFunction not unlike the Function class, but with the difference that the return value is tensor-valued rather than scalar of vector-valued.

#include <deal.II/base/tensor_function.h>
#include <deal.II/numerics/error_estimator.h>

Ginkgo's header file

#include <ginkgo/ginkgo.hpp>

This is C++, as we want to write some output to disk:

#include <fstream>
#include <iostream>

The last step is as in previous programs:

namespace Step9 {
using namespace dealii;

AdvectionProblem class declaration

Following we declare the main class of this program. It is very much like the main classes of previous examples, so we again only comment on the differences.

template <int dim>
class AdvectionProblem {
public:
AdvectionProblem();
~AdvectionProblem();
void run();
private:
void setup_system();

The next set of functions will be used to assemble the matrix. However, unlike in the previous examples, the assemble_system() function will not do the work itself, but rather will delegate the actual assembly to helper functions assemble_local_system() and copy_local_to_global(). The rationale is that matrix assembly can be parallelized quite well, as the computation of the local contributions on each cell is entirely independent of other cells, and we only have to synchronize when we add the contribution of a cell to the global matrix.

The strategy for parallelization we choose here is one of the possibilities mentioned in detail in the threads module in the documentation. Specifically, we will use the WorkStream approach discussed there. Since there is so much documentation in this module, we will not repeat the rationale for the design choices here (for example, if you read through the module mentioned above, you will understand what the purpose of the AssemblyScratchData and AssemblyCopyData structures is). Rather, we will only discuss the specific implementation.

If you read the page mentioned above, you will find that in order to parallelize assembly, we need two data structures – one that corresponds to data that we need during local integration ("scratch data", i.e., things we only need as temporary storage), and one that carries information from the local integration to the function that then adds the local contributions to the corresponding elements of the global matrix. The former of these typically contains the FEValues and FEFaceValues objects, whereas the latter has the local matrix, local right hand side, and information about which degrees of freedom live on the cell for which we are assembling a local contribution. With this information, the following should be relatively self-explanatory:

struct AssemblyScratchData {
AssemblyScratchData(const FiniteElement<dim>& fe);
AssemblyScratchData(const AssemblyScratchData& scratch_data);
FEValues<dim> fe_values;
FEFaceValues<dim> fe_face_values;
};
struct AssemblyCopyData {
FullMatrix<double> cell_matrix;
Vector<double> cell_rhs;
std::vector<types::global_dof_index> local_dof_indices;
};
void assemble_system();
void local_assemble_system(
const typename DoFHandler<dim>::active_cell_iterator& cell,
AssemblyScratchData& scratch, AssemblyCopyData& copy_data);
void copy_local_to_global(const AssemblyCopyData& copy_data);

The following functions again are as in previous examples, as are the subsequent variables.

void solve();
void refine_grid();
void output_results(const unsigned int cycle) const;
Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
FE_Q<dim> fe;
ConstraintMatrix hanging_node_constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
};

Equation data declaration

Next we declare a class that describes the advection field. This, of course, is a vector field with as many components as there are space dimensions. One could now use a class derived from the Function base class, as we have done for boundary values and coefficients in previous examples, but there is another possibility in the library, namely a base class that describes tensor valued functions. In contrast to the usual Function objects, we provide the compiler with knowledge on the size of the objects of the return type. This enables the compiler to generate efficient code, which is not so simple for usual vector-valued functions where memory has to be allocated on the heap (thus, the Function::vector_value function has to be given the address of an object into which the result is to be written, in order to avoid copying and memory allocation and deallocation on the heap). In addition to the known size, it is possible not only to return vectors, but also tensors of higher rank; however, this is not very often requested by applications, to be honest...

The interface of the TensorFunction class is relatively close to that of the Function class, so there is probably no need to comment in detail the following declaration:

template <int dim>
class AdvectionField : public TensorFunction<1, dim> {
public:
AdvectionField() : TensorFunction<1, dim>() {}
virtual Tensor<1, dim> value(const Point<dim>& p) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<Tensor<1, dim>>& values) const;

In previous examples, we have used assertions that throw exceptions in several places. However, we have never seen how such exceptions are declared. This can be done as follows:

DeclException2(ExcDimensionMismatch, unsigned int, unsigned int,
<< "The vector has size " << arg1 << " but should have "
<< arg2 << " elements.");

The syntax may look a little strange, but is reasonable. The format is basically as follows: use the name of one of the macros DeclExceptionN, where N denotes the number of additional parameters which the exception object shall take. In this case, as we want to throw the exception when the sizes of two vectors differ, we need two arguments, so we use DeclException2. The first parameter then describes the name of the exception, while the following declare the data types of the parameters. The last argument is a sequence of output directives that will be piped into the std::cerr object, thus the strange format with the leading << operator and the like. Note that we can access the parameters which are passed to the exception upon construction (i.e. within the Assert call) by using the names arg1 through argN, where N is the number of arguments as defined by the use of the respective macro DeclExceptionN.

To learn how the preprocessor expands this macro into actual code, please refer to the documentation of the exception classes in the base library. Suffice it to say that by this macro call, the respective exception class is declared, which also has error output functions already implemented.

};

The following two functions implement the interface described above. The first simply implements the function as described in the introduction, while the second uses the same trick to avoid calling a virtual function as has already been introduced in the previous example program. Note the check for the right sizes of the arguments in the second function, which should always be present in such functions; it is our experience that many if not most programming errors result from incorrectly initialized arrays, incompatible parameters to functions and the like; using assertion as in this case can eliminate many of these problems.

template <int dim>
Tensor<1, dim> AdvectionField<dim>::value(const Point<dim>& p) const
{
Point<dim> value;
value[0] = 2;
for (unsigned int i = 1; i < dim; ++i)
value[i] = 1 + 0.8 * std::sin(8 * numbers::PI * p[0]);
return value;
}
template <int dim>
void AdvectionField<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<Tensor<1, dim>>& values) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = AdvectionField<dim>::value(points[i]);
}

Besides the advection field, we need two functions describing the source terms (right hand side) and the boundary values. First for the right hand side, which follows the same pattern as in previous examples. As described in the introduction, the source is a constant function in the vicinity of a source point, which we denote by the constant static variable center_point. We set the values of this center using the same template tricks as we have shown in the step-7 example program. The rest is simple and has been shown previously, including the way to avoid virtual function calls in the value_list function.

template <int dim>
class RightHandSide : public Function<dim> {
public:
RightHandSide() : Function<dim>() {}
virtual double value(const Point<dim>& p,
const unsigned int component = 0) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component = 0) const;
private:
static const Point<dim> center_point;
};
template <>
const Point<1> RightHandSide<1>::center_point = Point<1>(-0.75);
template <>
const Point<2> RightHandSide<2>::center_point = Point<2>(-0.75, -0.75);
template <>
const Point<3> RightHandSide<3>::center_point = Point<3>(-0.75, -0.75, -0.75);

The only new thing here is that we check for the value of the component parameter. As this is a scalar function, it is obvious that it only makes sense if the desired component has the index zero, so we assert that this is indeed the case. ExcIndexRange is a global predefined exception (probably the one most often used, we therefore made it global instead of local to some class), that takes three parameters: the index that is outside the allowed range, the first element of the valid range and the one past the last (i.e. again the half-open interval so often used in the C++ standard library):

template <int dim>
double RightHandSide<dim>::value(const Point<dim>& p,
const unsigned int component) const
{
(void)component;
Assert(component == 0, ExcIndexRange(component, 0, 1));
const double diameter = 0.1;
return ((p - center_point).norm_square() < diameter * diameter
? .1 / std::pow(diameter, dim)
: 0);
}
template <int dim>
void RightHandSide<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = RightHandSide<dim>::value(points[i], component);
}

Finally for the boundary values, which is just another class derived from the Function base class:

template <int dim>
class BoundaryValues : public Function<dim> {
public:
BoundaryValues() : Function<dim>() {}
virtual double value(const Point<dim>& p,
const unsigned int component = 0) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component = 0) const;
};
template <int dim>
double BoundaryValues<dim>::value(const Point<dim>& p,
const unsigned int component) const
{
(void)component;
Assert(component == 0, ExcIndexRange(component, 0, 1));
const double sine_term =
std::sin(16 * numbers::PI * std::sqrt(p.norm_square()));
const double weight = std::exp(-5 * p.norm_square()) / std::exp(-5.);
return sine_term * weight;
}
template <int dim>
void BoundaryValues<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = BoundaryValues<dim>::value(points[i], component);
}

GradientEstimation class declaration

Now, finally, here comes the class that will compute the difference approximation of the gradient on each cell and weighs that with a power of the mesh size, as described in the introduction. This class is a simple version of the DerivativeApproximation class in the library, that uses similar techniques to obtain finite difference approximations of the gradient of a finite element field, or of higher derivatives.

The class has one public static function estimate that is called to compute a vector of error indicators, and a few private functions that do the actual work on all active cells. As in other parts of the library, we follow an informal convention to use vectors of floats for error indicators rather than the common vectors of doubles, as the additional accuracy is not necessary for estimated values.

In addition to these two functions, the class declares two exceptions which are raised when a cell has no neighbors in each of the space directions (in which case the matrix described in the introduction would be singular and can't be inverted), while the other one is used in the more common case of invalid parameters to a function, namely a vector of wrong size.

Two other comments: first, the class has no non-static member functions or variables, so this is not really a class, but rather serves the purpose of a namespace in C++. The reason that we chose a class over a namespace is that this way we can declare functions that are private. This can be done with namespaces as well, if one declares some functions in header files in the namespace and implements these and other functions in the implementation file. The functions not declared in the header file are still in the namespace but are not callable from outside. However, as we have only one file here, it is not possible to hide functions in the present case.

The second comment is that the dimension template parameter is attached to the function rather than to the class itself. This way, you don't have to specify the template parameter yourself as in most other cases, but the compiler can figure its value out itself from the dimension of the DoF handler object that one passes as first argument.

Before jumping into the fray with the implementation, let us also comment on the parallelization strategy. We have already introduced the necessary framework for using the WorkStream concept in the declaration of the main class of this program above. We will use it again here. In the current context, this means that we have to define (i) classes for scratch and copy objects, (ii) a function that does the local computation on one cell, and (iii) a function that copies the local result into a global object. Given this general framework, we will, however, deviate from it a bit. In particular, WorkStream was generally invented for cases where each local computation on a cell adds to a global object – for example, when assembling linear systems where we add local contributions into a global matrix and right hand side. WorkStream is designed to handle the potential conflict of multiple threads trying to do this addition at the same time, and consequently has to provide for some way to ensure that only thread gets to do this at a time. Here, however, the situation is slightly different: we compute contributions from every cell individually, but then all we need to do is put them into an element of an output vector that is unique to each cell. Consequently, there is no risk that the write operations from two cells might conflict, and the elaborate machinery of WorkStream to avoid conflicting writes is not necessary. Consequently, what we will do is this: We still need a scratch object that holds, for example, the FEValues object. However, we only create a fake, empty copy data structure. Likewise, we do need the function that computes local contributions, but since it can already put the result into its final location, we do not need a copy-local-to-global function and will instead give the WorkStream::run() function an empty function object – the equivalent to a NULL function pointer.

class GradientEstimation {
public:
template <int dim>
static void estimate(const DoFHandler<dim>& dof,
const Vector<double>& solution,
Vector<float>& error_per_cell);
DeclException2(ExcInvalidVectorLength, int, int,
<< "Vector has length " << arg1 << ", but should have "
<< arg2);
DeclException0(ExcInsufficientDirections);
private:
template <int dim>
struct EstimateScratchData {
EstimateScratchData(const FiniteElement<dim>& fe,
const Vector<double>& solution,
Vector<float>& error_per_cell);
EstimateScratchData(const EstimateScratchData& data);
FEValues<dim> fe_midpoint_value;
const Vector<double>& solution;
Vector<float>& error_per_cell;
};
struct EstimateCopyData {};
template <int dim>
static void estimate_cell(
const typename DoFHandler<dim>::active_cell_iterator& cell,
EstimateScratchData<dim>& scratch_data,
const EstimateCopyData& copy_data);
};

AdvectionProblem class implementation

Now for the implementation of the main class. Constructor, destructor and the function setup_system follow the same pattern that was used previously, so we need not comment on these three function:

template <int dim>
AdvectionProblem<dim>::AdvectionProblem() : dof_handler(triangulation), fe(1)
{}
template <int dim>
AdvectionProblem<dim>::~AdvectionProblem()
{
dof_handler.clear();
}
template <int dim>
void AdvectionProblem<dim>::setup_system()
{
dof_handler.distribute_dofs(fe);
hanging_node_constraints.clear();
DoFTools::make_hanging_node_constraints(dof_handler,
hanging_node_constraints);
hanging_node_constraints.close();
DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
DoFTools::make_sparsity_pattern(dof_handler, dsp, hanging_node_constraints,
/ *keep_constrained_dofs = * / true);
sparsity_pattern.copy_from(dsp);
system_matrix.reinit(sparsity_pattern);
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
}

In the following function, the matrix and right hand side are assembled. As stated in the documentation of the main class above, it does not do this itself, but rather delegates to the function following next, utilizing the WorkStream concept discussed in threads .

If you have looked through the threads module, you will have seen that assembling in parallel does not take an incredible amount of extra code as long as you diligently describe what the scratch and copy data objects are, and if you define suitable functions for the local assembly and the copy operation from local contributions to global objects. This done, the following will do all the heavy lifting to get these operations done on multiple threads on as many cores as you have in your system:

template <int dim>
void AdvectionProblem<dim>::assemble_system()
{
WorkStream::run(dof_handler.begin_active(), dof_handler.end(), *this,
&AdvectionProblem::local_assemble_system,
&AdvectionProblem::copy_local_to_global,
AssemblyScratchData(fe), AssemblyCopyData());

After the matrix has been assembled in parallel, we still have to eliminate hanging node constraints. This is something that can't be done on each of the threads separately, so we have to do it now. Note also, that unlike in previous examples, there are no boundary conditions to be applied to the system of equations. This, of course, is due to the fact that we have included them into the weak formulation of the problem.

hanging_node_constraints.condense(system_matrix);
hanging_node_constraints.condense(system_rhs);
}

As already mentioned above, we need to have scratch objects for the parallel computation of local contributions. These objects contain FEValues and FEFaceValues objects, and so we will need to have constructors and copy constructors that allow us to create them. In initializing them, note first that we use bilinear elements, soGauss formulae with two points in each space direction are sufficient. For the cell terms we need the values and gradients of the shape functions, the quadrature points in order to determine the source density and the advection field at a given point, and the weights of the quadrature points times the determinant of the Jacobian at these points. In contrast, for the boundary integrals, we don't need the gradients, but rather the normal vectors to the cells. This determines which update flags we will have to pass to the constructors of the members of the class:

template <int dim>
AdvectionProblem<dim>::AssemblyScratchData::AssemblyScratchData(
const FiniteElement<dim>& fe)
: fe_values(fe, QGauss<dim>(2),
update_values | update_gradients | update_quadrature_points |
update_JxW_values),
fe_face_values(fe, QGauss<dim - 1>(2),
update_values | update_quadrature_points |
update_JxW_values | update_normal_vectors)
{}
template <int dim>
AdvectionProblem<dim>::AssemblyScratchData::AssemblyScratchData(
const AssemblyScratchData& scratch_data)
: fe_values(scratch_data.fe_values.get_fe(),
scratch_data.fe_values.get_quadrature(),
update_values | update_gradients | update_quadrature_points |
update_JxW_values),
fe_face_values(scratch_data.fe_face_values.get_fe(),
scratch_data.fe_face_values.get_quadrature(),
update_values | update_quadrature_points |
update_JxW_values | update_normal_vectors)
{}

Now, this is the function that does the actual work. It is not very different from the assemble_system functions of previous example programs, so we will again only comment on the differences. The mathematical stuff follows closely what we have said in the introduction.

There are a number of points worth mentioning here, though. The first one is that we have moved the FEValues and FEFaceValues objects into the ScratchData object. We have done so because the alternative would have been to simply create one every time we get into this function – i.e., on every cell. It now turns out that the FEValues classes were written with the explicit goal of moving everything that remains the same from cell to cell into the construction of the object, and only do as little work as possible in FEValues::reinit() whenever we move to a new cell. What this means is that it would be very expensive to create a new object of this kind in this function as we would have to do it for every cell – exactly the thing we wanted to avoid with the FEValues class. Instead, what we do is create it only once (or a small number of times) in the scratch objects and then re-use it as often as we can.

This begs the question of whether there are other objects we create in this function whose creation is expensive compared to its use. Indeed, at the top of the function, we declare all sorts of objects. The AdvectionField, RightHandSide and BoundaryValues do not cost much to create, so there is no harm here. However, allocating memory in creating the rhs_values and similar variables below typically costs a significant amount of time, compared to just accessing the (temporary) values we store in them. Consequently, these would be candidates for moving into the AssemblyScratchData class. We will leave this as an exercise.

template <int dim>
void AdvectionProblem<dim>::local_assemble_system(
const typename DoFHandler<dim>::active_cell_iterator& cell,
AssemblyScratchData& scratch_data, AssemblyCopyData& copy_data)
{

First of all, we will need some objects that describe boundary values, right hand side function and the advection field. As we will only perform actions on these objects that do not change them, we declare them as constant, which can enable the compiler in some cases to perform additional optimizations.

const AdvectionField<dim> advection_field;
const RightHandSide<dim> right_hand_side;
const BoundaryValues<dim> boundary_values;

Then we define some abbreviations to avoid unnecessarily long lines:

const unsigned int dofs_per_cell = fe.dofs_per_cell;
const unsigned int n_q_points =
scratch_data.fe_values.get_quadrature().size();
const unsigned int n_face_q_points =
scratch_data.fe_face_values.get_quadrature().size();

We declare cell matrix and cell right hand side...

copy_data.cell_matrix.reinit(dofs_per_cell, dofs_per_cell);
copy_data.cell_rhs.reinit(dofs_per_cell);

... an array to hold the global indices of the degrees of freedom of the cell on which we are presently working...

copy_data.local_dof_indices.resize(dofs_per_cell);

... and array in which the values of right hand side, advection direction, and boundary values will be stored, for cell and face integrals respectively:

std::vector<double> rhs_values(n_q_points);
std::vector<Tensor<1, dim>> advection_directions(n_q_points);
std::vector<double> face_boundary_values(n_face_q_points);
std::vector<Tensor<1, dim>> face_advection_directions(n_face_q_points);

... then initialize the FEValues object...

scratch_data.fe_values.reinit(cell);

... obtain the values of right hand side and advection directions at the quadrature points...

advection_field.value_list(scratch_data.fe_values.get_quadrature_points(),
advection_directions);
right_hand_side.value_list(scratch_data.fe_values.get_quadrature_points(),
rhs_values);

... set the value of the streamline diffusion parameter as described in the introduction...

const double delta = 0.1 * cell->diameter();

... and assemble the local contributions to the system matrix and right hand side as also discussed above:

for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
for (unsigned int i = 0; i < dofs_per_cell; ++i) {
for (unsigned int j = 0; j < dofs_per_cell; ++j)
copy_data.cell_matrix(i, j) +=
((advection_directions[q_point] *
scratch_data.fe_values.shape_grad(j, q_point) *
(scratch_data.fe_values.shape_value(i, q_point) +
delta *
(advection_directions[q_point] *
scratch_data.fe_values.shape_grad(i, q_point)))) *
scratch_data.fe_values.JxW(q_point));
copy_data.cell_rhs(i) +=
((scratch_data.fe_values.shape_value(i, q_point) +
delta * (advection_directions[q_point] *
scratch_data.fe_values.shape_grad(i, q_point))) *
rhs_values[q_point] * scratch_data.fe_values.JxW(q_point));
}

Besides the cell terms which we have built up now, the bilinear form of the present problem also contains terms on the boundary of the domain. Therefore, we have to check whether any of the faces of this cell are on the boundary of the domain, and if so assemble the contributions of this face as well. Of course, the bilinear form only contains contributions from the inflow part of the boundary, but to find out whether a certain part of a face of the present cell is part of the inflow boundary, we have to have information on the exact location of the quadrature points and on the direction of flow at this point; we obtain this information using the FEFaceValues object and only decide within the main loop whether a quadrature point is on the inflow boundary.

for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell;
++face)
if (cell->face(face)->at_boundary()) {

Ok, this face of the present cell is on the boundary of the domain. Just as for the usual FEValues object which we have used in previous examples and also above, we have to reinitialize the FEFaceValues object for the present face:

scratch_data.fe_face_values.reinit(cell, face);

For the quadrature points at hand, we ask for the values of the inflow function and for the direction of flow:

boundary_values.value_list(
scratch_data.fe_face_values.get_quadrature_points(),
face_boundary_values);
advection_field.value_list(
scratch_data.fe_face_values.get_quadrature_points(),
face_advection_directions);

Now loop over all quadrature points and see whether it is on the inflow or outflow part of the boundary. This is determined by a test whether the advection direction points inwards or outwards of the domain (note that the normal vector points outwards of the cell, and since the cell is at the boundary, the normal vector points outward of the domain, so if the advection direction points into the domain, its scalar product with the normal vector must be negative):

for (unsigned int q_point = 0; q_point < n_face_q_points; ++q_point)
if (scratch_data.fe_face_values.normal_vector(q_point) *
face_advection_directions[q_point] <
0)

If the is part of the inflow boundary, then compute the contributions of this face to the global matrix and right hand side, using the values obtained from the FEFaceValues object and the formulae discussed in the introduction:

for (unsigned int i = 0; i < dofs_per_cell; ++i) {
for (unsigned int j = 0; j < dofs_per_cell; ++j)
copy_data.cell_matrix(i, j) -=
(face_advection_directions[q_point] *
scratch_data.fe_face_values.normal_vector(
q_point) *
scratch_data.fe_face_values.shape_value(
i, q_point) *
scratch_data.fe_face_values.shape_value(
j, q_point) *
scratch_data.fe_face_values.JxW(q_point));
copy_data.cell_rhs(i) -=
(face_advection_directions[q_point] *
scratch_data.fe_face_values.normal_vector(
q_point) *
face_boundary_values[q_point] *
scratch_data.fe_face_values.shape_value(i,
q_point) *
scratch_data.fe_face_values.JxW(q_point));
}
}

Now go on by transferring the local contributions to the system of equations into the global objects. The first step was to obtain the global indices of the degrees of freedom on this cell.

cell->get_dof_indices(copy_data.local_dof_indices);
}

The second function we needed to write was the one that copies the local contributions the previous function has computed and put into the copy data object, into the global matrix and right hand side vector objects. This is essentially what we always had as the last block of code when assembling something on every cell. The following should therefore be pretty obvious:

template <int dim>
void AdvectionProblem<dim>::copy_local_to_global(
const AssemblyCopyData& copy_data)
{
for (unsigned int i = 0; i < copy_data.local_dof_indices.size(); ++i) {
for (unsigned int j = 0; j < copy_data.local_dof_indices.size(); ++j)
system_matrix.add(copy_data.local_dof_indices[i],
copy_data.local_dof_indices[j],
copy_data.cell_matrix(i, j));
system_rhs(copy_data.local_dof_indices[i]) += copy_data.cell_rhs(i);
}
}

Following is the function that solves the linear system of equations. As the system is no more symmetric positive definite as in all the previous examples, we can't use the Conjugate Gradients method anymore. Rather, we use a solver that is tailored to nonsymmetric systems like the one at hand, the BiCGStab method. As preconditioner, we use the Block Jacobi method.

template <int dim>
void AdvectionProblem<dim>::solve()
{

Assert that the system be symmetric.

Assert(system_matrix.m() == system_matrix.n(), ExcNotQuadratic());
auto num_rows = system_matrix.m();

Make a copy of the rhs to use with Ginkgo.

std::vector<double> rhs(num_rows);
std::copy(system_rhs.begin(), system_rhs.begin() + num_rows, rhs.begin());

Ginkgo setup Some shortcuts: A vector is a Dense matrix with co-dimension 1. The matrix is setup in CSR. But various formats can be used. Look at Ginkgo's documentation.

using mtx = gko::matrix::Csr<>;
using bicgstab = gko::solver::Bicgstab<>;
using val_array = gko::array<double>;

Where the code is to be executed. Can be changed to omp or cuda to run on multiple threads or on gpu's

std::shared_ptr<gko::Executor> exec = gko::ReferenceExecutor::create();

Setup Ginkgo's data structures

auto b = vec::create(exec, gko::dim<2>(num_rows, 1),
val_array::view(exec, num_rows, rhs.data()), 1);
auto x = vec::create(exec, gko::dim<2>(num_rows, 1));
auto A = mtx::create(exec, gko::dim<2>(num_rows),
system_matrix.n_nonzero_elements());
mtx::value_type* values = A->get_values();
mtx::index_type* row_ptr = A->get_row_ptrs();
mtx::index_type* col_idx = A->get_col_idxs();

Convert to standard CSR format As deal.ii does not expose its system matrix pointers, we construct them individually.

row_ptr[0] = 0;
for (auto row = 1; row <= num_rows; ++row) {
row_ptr[row] = row_ptr[row - 1] + system_matrix.get_row_length(row - 1);
}
std::vector<mtx::index_type> ptrs(num_rows + 1);
std::copy(A->get_row_ptrs(), A->get_row_ptrs() + num_rows + 1,
ptrs.begin());
for (auto row = 0; row < system_matrix.m(); ++row) {
for (auto p = system_matrix.begin(row); p != system_matrix.end(row);
++p) {

write entry into the first free one for this row

col_idx[ptrs[row]] = p->column();
values[ptrs[row]] = p->value();

then move pointer ahead

++ptrs[row];
}
}

Ginkgo solve The stopping criteria is set at maximum iterations of 1000 and a reduction factor of 1e-12. For other options, refer to Ginkgo's documentation.

auto solver_gen =
bicgstab::build()
.with_criteria(
gko::stop::Iteration::build().with_max_iters(1000),
gko::stop::ResidualNorm<>::build().with_reduction_factor(1e-12))
.with_preconditioner(bj::build())
.on(exec);
auto solver = solver_gen->generate(gko::give(A));

Solve system

solver->apply(b, x);

Copy the solution vector back to deal.ii's data structures.

std::copy(x->get_values(), x->get_values() + num_rows, solution.begin());
/ ******************************************************
* deal.ii internal solver. Here for reference.
SolverControl solver_control (1000, 1e-12);
SolverBicgstab<> bicgstab (solver_control);
PreconditionJacobi<> preconditioner;
preconditioner.initialize(system_matrix, 1.0);
bicgstab.solve (system_matrix, solution, system_rhs,
preconditioner);
******************************************************* /

Distribute the possible hanging nodes constraints

hanging_node_constraints.distribute(solution);
}

The following function refines the grid according to the quantity described in the introduction. The respective computations are made in the class GradientEstimation. The only difference to previous examples is that we refine a little more aggressively (0.5 instead of 0.3 of the number of cells).

template <int dim>
void AdvectionProblem<dim>::refine_grid()
{
Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
GradientEstimation::estimate(dof_handler, solution,
estimated_error_per_cell);
GridRefinement::refine_and_coarsen_fixed_number(
triangulation, estimated_error_per_cell, 0.5, 0.03);
triangulation.execute_coarsening_and_refinement();
}

Writing output to disk is done in the same way as in the previous examples. Indeed, the function is identical to the one in step-6.

template <int dim>
void AdvectionProblem<dim>::output_results(const unsigned int cycle) const
{
{
GridOut grid_out;
std::ofstream output("grid-" + std::to_string(cycle) + ".eps");
grid_out.write_eps(triangulation, output);
}
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler);
data_out.add_data_vector(solution, "solution");
data_out.build_patches();
std::ofstream output("solution-" + std::to_string(cycle) + ".vtk");
data_out.write_vtk(output);
}
}

... as is the main loop (setup – solve – refine)

template <int dim>
void AdvectionProblem<dim>::run()
{
for (unsigned int cycle = 0; cycle < 6; ++cycle) {
std::cout << "Cycle " << cycle << ':' << std::endl;
if (cycle == 0) {
GridGenerator::hyper_cube(triangulation, -1, 1);
triangulation.refine_global(4);
} else {
refine_grid();
}
std::cout << " Number of active cells: "
<< triangulation.n_active_cells() << std::endl;
setup_system();
std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()
<< std::endl;
assemble_system();
solve();
output_results(cycle);
}
}

GradientEstimation class implementation

Now for the implementation of the GradientEstimation class. Let us start by defining constructors for the EstimateScratchData class used by the estimate_cell() function:

template <int dim>
GradientEstimation::EstimateScratchData<dim>::EstimateScratchData(
const FiniteElement<dim>& fe, const Vector<double>& solution,
Vector<float>& error_per_cell)
: fe_midpoint_value(fe, QMidpoint<dim>(),
update_values | update_quadrature_points),
solution(solution),
error_per_cell(error_per_cell)
{}
template <int dim>
GradientEstimation::EstimateScratchData<dim>::EstimateScratchData(
const EstimateScratchData& scratch_data)
: fe_midpoint_value(scratch_data.fe_midpoint_value.get_fe(),
scratch_data.fe_midpoint_value.get_quadrature(),
update_values | update_quadrature_points),
solution(scratch_data.solution),
error_per_cell(scratch_data.error_per_cell)
{}

Next for the implementation of the GradientEstimation class. The first function does not much except for delegating work to the other function, but there is a bit of setup at the top.

Before starting with the work, we check that the vector into which the results are written has the right size. Programming mistakes in which one forgets to size arguments correctly at the calling site are quite common. Because the resulting damage from not catching such errors is often subtle (e.g., corruption of data somewhere in memory, or non-reproducible results), it is well worth the effort to check for such things.

template <int dim>
void GradientEstimation::estimate(const DoFHandler<dim>& dof_handler,
const Vector<double>& solution,
Vector<float>& error_per_cell)
{
Assert(error_per_cell.size() ==
dof_handler.get_triangulation().n_active_cells(),
ExcInvalidVectorLength(
error_per_cell.size(),
dof_handler.get_triangulation().n_active_cells()));
WorkStream::run(dof_handler.begin_active(), dof_handler.end(),
&GradientEstimation::template estimate_cell<dim>,
std::function<void(const EstimateCopyData&)>(),
EstimateScratchData<dim>(dof_handler.get_fe(), solution,
error_per_cell),
EstimateCopyData());
}

Following now the function that actually computes the finite difference approximation to the gradient. The general outline of the function is to first compute the list of active neighbors of the present cell and then compute the quantities described in the introduction for each of the neighbors. The reason for this order is that it is not a one-liner to find a given neighbor with locally refined meshes. In principle, an optimized implementation would find neighbors and the quantities depending on them in one step, rather than first building a list of neighbors and in a second step their contributions but we will gladly leave this as an exercise. As discussed before, the worker function passed to WorkStream::run works on "scratch" objects that keep all temporary objects. This way, we do not need to create and initialize objects that are expensive to initialize within the function that does the work, every time it is called for a given cell. Such an argument is passed as the second argument. The third argument would be a "copy-data" object (see threads for more information) but we do not actually use any of these here. Because WorkStream::run() insists on passing three arguments, we declare this function with three arguments, but simply ignore the last one.

(This is unsatisfactory from an esthetic perspective. It can be avoided, at the cost of some other trickery. If you allow, let us here show how. First, assume that we had declared this function to only take two arguments by omitting the unused last one. Now, WorkStream::run still wants to call this function with three arguments, so we need to find a way to "forget" the third argument in the call. Simply passing WorkStream::run the pointer to the function as we do above will not do this – the compiler will complain that a function declared to have two arguments is called with three arguments. However, we can do this by passing the following as the third argument when calling WorkStream::run() above:

std::function<void (const typename DoFHandler<dim>::active_cell_iterator
&,
EstimateScratchData<dim> &,
EstimateCopyData &)>
(std::bind (&GradientEstimation::template estimate_cell<dim>,
std::placeholders::_1,
std::placeholders::_2))

This creates a function object taking three arguments, but when it calls the underlying function object, it simply only uses the first and second argument – we simply "forget" to use the third argument :-) In the end, this isn't completely obvious either, and so we didn't implement it, but hey – it can be done!)

Now for the details:

template <int dim>
void GradientEstimation::estimate_cell(
const typename DoFHandler<dim>::active_cell_iterator& cell,
EstimateScratchData<dim>& scratch_data, const EstimateCopyData&)
{

We need space for the tensor Y, which is the sum of outer products of the y-vectors.

Tensor<2, dim> Y;

Then we allocate a vector to hold iterators to all active neighbors of a cell. We reserve the maximal number of active neighbors in order to avoid later reallocations. Note how this maximal number of active neighbors is computed here.

std::vector<typename DoFHandler<dim>::active_cell_iterator>
active_neighbors;
active_neighbors.reserve(GeometryInfo<dim>::faces_per_cell *
GeometryInfo<dim>::max_children_per_face);

First initialize the FEValues object, as well as the Y tensor:

scratch_data.fe_midpoint_value.reinit(cell);

Then allocate the vector that will be the sum over the y-vectors times the approximate directional derivative:

Tensor<1, dim> projected_gradient;

Now before going on first compute a list of all active neighbors of the present cell. We do so by first looping over all faces and see whether the neighbor there is active, which would be the case if it is on the same level as the present cell or one level coarser (note that a neighbor can only be once coarser than the present cell, as we only allow a maximal difference of one refinement over a face in deal.II). Alternatively, the neighbor could be on the same level and be further refined; then we have to find which of its children are next to the present cell and select these (note that if a child of a neighbor of an active cell that is next to this active cell, needs necessarily be active itself, due to the one-refinement rule cited above).

Things are slightly different in one space dimension, as there the one-refinement rule does not exist: neighboring active cells may differ in as many refinement levels as they like. In this case, the computation becomes a little more difficult, but we will explain this below.

Before starting the loop over all neighbors of the present cell, we have to clear the array storing the iterators to the active neighbors, of course.

active_neighbors.clear();
for (unsigned int face_no = 0; face_no < GeometryInfo<dim>::faces_per_cell;
++face_no)
if (!cell->at_boundary(face_no)) {

First define an abbreviation for the iterator to the face and the neighbor

const typename DoFHandler<dim>::face_iterator face =
cell->face(face_no);
const typename DoFHandler<dim>::cell_iterator neighbor =
cell->neighbor(face_no);

Then check whether the neighbor is active. If it is, then it is on the same level or one level coarser (if we are not in 1D), and we are interested in it in any case.

if (neighbor->active())
active_neighbors.push_back(neighbor);
else {

If the neighbor is not active, then check its children.

if (dim == 1) {

To find the child of the neighbor which bounds to the present cell, successively go to its right child if we are left of the present cell (n==0), or go to the left child if we are on the right (n==1), until we find an active cell.

typename DoFHandler<dim>::cell_iterator neighbor_child =
neighbor;
while (neighbor_child->has_children())
neighbor_child =
neighbor_child->child(face_no == 0 ? 1 : 0);

As this used some non-trivial geometrical intuition, we might want to check whether we did it right, i.e. check whether the neighbor of the cell we found is indeed the cell we are presently working on. Checks like this are often useful and have frequently uncovered errors both in algorithms like the line above (where it is simple to involuntarily exchange n==1 for n==0 or the like) and in the library (the assumptions underlying the algorithm above could either be wrong, wrongly documented, or are violated due to an error in the library). One could in principle remove such checks after the program works for some time, but it might be a good things to leave it in anyway to check for changes in the library or in the algorithm above.

Note that if this check fails, then this is certainly an error that is irrecoverable and probably qualifies as an internal error. We therefore use a predefined exception class to throw here.

Assert(
neighbor_child->neighbor(face_no == 0 ? 1 : 0) == cell,
ExcInternalError());

If the check succeeded, we push the active neighbor we just found to the stack we keep:

active_neighbors.push_back(neighbor_child);
} else

If we are not in 1d, we collect all neighbor children ‘behind’ the subfaces of the current face

for (unsigned int subface_no = 0;
subface_no < face->n_children(); ++subface_no)
active_neighbors.push_back(
cell->neighbor_child_on_subface(face_no,
subface_no));
}
}

OK, now that we have all the neighbors, lets start the computation on each of them. First we do some preliminaries: find out about the center of the present cell and the solution at this point. The latter is obtained as a vector of function values at the quadrature points, of which there are only one, of course. Likewise, the position of the center is the position of the first (and only) quadrature point in real space.

const Point<dim> this_center =
scratch_data.fe_midpoint_value.quadrature_point(0);
std::vector<double> this_midpoint_value(1);
scratch_data.fe_midpoint_value.get_function_values(scratch_data.solution,
this_midpoint_value);

Now loop over all active neighbors and collect the data we need. Allocate a vector just like this_midpoint_value which we will use to store the value of the solution in the midpoint of the neighbor cell. We allocate it here already, since that way we don't have to allocate memory repeatedly in each iteration of this inner loop (memory allocation is a rather expensive operation):

std::vector<double> neighbor_midpoint_value(1);
typename std::vector<typename DoFHandler<dim>::active_cell_iterator>::
const_iterator neighbor_ptr = active_neighbors.begin();
for (; neighbor_ptr != active_neighbors.end(); ++neighbor_ptr) {

First define an abbreviation for the iterator to the active neighbor cell:

const typename DoFHandler<dim>::active_cell_iterator neighbor =
*neighbor_ptr;

Then get the center of the neighbor cell and the value of the finite element function thereon. Note that for this information we have to reinitialize the FEValues object for the neighbor cell.

scratch_data.fe_midpoint_value.reinit(neighbor);
const Point<dim> neighbor_center =
scratch_data.fe_midpoint_value.quadrature_point(0);
scratch_data.fe_midpoint_value.get_function_values(
scratch_data.solution, neighbor_midpoint_value);

Compute the vector y connecting the centers of the two cells. Note that as opposed to the introduction, we denote by y the normalized difference vector, as this is the quantity used everywhere in the computations.

Tensor<1, dim> y = neighbor_center - this_center;
const double distance = y.norm();
y /= distance;

Then add up the contribution of this cell to the Y matrix...

for (unsigned int i = 0; i < dim; ++i)
for (unsigned int j = 0; j < dim; ++j) Y[i][j] += y[i] * y[j];

... and update the sum of difference quotients:

projected_gradient +=
(neighbor_midpoint_value[0] - this_midpoint_value[0]) / distance *
y;
}

If now, after collecting all the information from the neighbors, we can determine an approximation of the gradient for the present cell, then we need to have passed over vectors y which span the whole space, otherwise we would not have all components of the gradient. This is indicated by the invertibility of the matrix.

If the matrix should not be invertible, this means that the present cell had an insufficient number of active neighbors. In contrast to all previous cases, where we raised exceptions, this is, however, not a programming error: it is a runtime error that can happen in optimized mode even if it ran well in debug mode, so it is reasonable to try to catch this error also in optimized mode. For this case, there is the AssertThrow macro: it checks the condition like the Assert macro, but not only in debug mode; it then outputs an error message, but instead of terminating the program as in the case of the Assert macro, the exception is thrown using the throw command of C++. This way, one has the possibility to catch this error and take reasonable counter actions. One such measure would be to refine the grid globally, as the case of insufficient directions can not occur if every cell of the initial grid has been refined at least once.

AssertThrow(determinant(Y) != 0, ExcInsufficientDirections());

If, on the other hand the matrix is invertible, then invert it, multiply the other quantity with it and compute the estimated error using this quantity and the right powers of the mesh width:

const Tensor<2, dim> Y_inverse = invert(Y);
Tensor<1, dim> gradient = Y_inverse * projected_gradient;

The last part of this function is the one where we write into the element of the output vector what we have just computed. The address of this vector has been stored in the scratch data object, and all we have to do is know how to get at the correct element inside this vector – but we can ask the cell we're on the how-manyth active cell it is for this:

scratch_data.error_per_cell(cell->active_cell_index()) =
(std::pow(cell->diameter(), 1 + 1.0 * dim / 2) *
std::sqrt(gradient.norm_square()));
}
} // namespace Step9

Main function

The main function is similar to the previous examples. The main difference is that we use MultithreadInfo to set the maximum number of threads (see Parallel computing with multiple processors accessing shared memory" documentation module for more explanation). The number of threads used is the minimum of the environment variable DEAL_II_NUM_THREADS and the parameter of set_thread_limit. If no value is given to set_thread_limit, the default value from the Intel Threading Building Blocks (TBB) library is used. If the call to set_thread_limit is omitted, the number of threads will be chosen by TBB independently of DEAL_II_NUM_THREADS.

int main()
{
try {
dealii::MultithreadInfo::set_thread_limit();
Step9::AdvectionProblem<2> advection_problem_2d;
advection_problem_2d.run();
} catch (std::exception& exc) {
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
} catch (...) {
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}

Results

Comments about programming and debugging

The plain program

/* ---------------------------------------------------------------------
*
* Copyright (C) 2000 - 2018 by the deal.II authors
*
* This file is part of the deal.II library.
*
* The deal.II library is free software; you can use it, redistribute
* it, and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* The full text of the license can be found in the file LICENSE at
* the top level of the deal.II distribution.
*
* ---------------------------------------------------------------------
*
* Author: Wolfgang Bangerth, University of Heidelberg, 2000
*/
/* ---------------------------------------------------------------------
*
* This file has been taken verbatim from the deal.ii (version 9.0)
* examples directory and modified.
*
* This example aims to demonstrate the ease with which Ginkgo can
* be interfaced with other libraries. The only modification/ addition
* has been to the AdvectionProblem::solve () function.
*
*/
#include <deal.II/base/function.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_out.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/lac/constraint_matrix.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/lac/solver_bicgstab.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/vector.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/base/multithread_info.h>
#include <deal.II/base/work_stream.h>
#include <deal.II/base/tensor_function.h>
#include <deal.II/numerics/error_estimator.h>
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iostream>
namespace Step9 {
using namespace dealii;
template <int dim>
class AdvectionProblem {
public:
AdvectionProblem();
~AdvectionProblem();
void run();
private:
void setup_system();
struct AssemblyScratchData {
AssemblyScratchData(const FiniteElement<dim>& fe);
AssemblyScratchData(const AssemblyScratchData& scratch_data);
FEValues<dim> fe_values;
FEFaceValues<dim> fe_face_values;
};
struct AssemblyCopyData {
FullMatrix<double> cell_matrix;
Vector<double> cell_rhs;
std::vector<types::global_dof_index> local_dof_indices;
};
void assemble_system();
void local_assemble_system(
const typename DoFHandler<dim>::active_cell_iterator& cell,
AssemblyScratchData& scratch, AssemblyCopyData& copy_data);
void copy_local_to_global(const AssemblyCopyData& copy_data);
void solve();
void refine_grid();
void output_results(const unsigned int cycle) const;
Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
FE_Q<dim> fe;
ConstraintMatrix hanging_node_constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
};
template <int dim>
class AdvectionField : public TensorFunction<1, dim> {
public:
AdvectionField() : TensorFunction<1, dim>() {}
virtual Tensor<1, dim> value(const Point<dim>& p) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<Tensor<1, dim>>& values) const;
DeclException2(ExcDimensionMismatch, unsigned int, unsigned int,
<< "The vector has size " << arg1 << " but should have "
<< arg2 << " elements.");
};
template <int dim>
Tensor<1, dim> AdvectionField<dim>::value(const Point<dim>& p) const
{
Point<dim> value;
value[0] = 2;
for (unsigned int i = 1; i < dim; ++i)
value[i] = 1 + 0.8 * std::sin(8 * numbers::PI * p[0]);
return value;
}
template <int dim>
void AdvectionField<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<Tensor<1, dim>>& values) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = AdvectionField<dim>::value(points[i]);
}
template <int dim>
class RightHandSide : public Function<dim> {
public:
RightHandSide() : Function<dim>() {}
virtual double value(const Point<dim>& p,
const unsigned int component = 0) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component = 0) const;
private:
static const Point<dim> center_point;
};
template <>
const Point<1> RightHandSide<1>::center_point = Point<1>(-0.75);
template <>
const Point<2> RightHandSide<2>::center_point = Point<2>(-0.75, -0.75);
template <>
const Point<3> RightHandSide<3>::center_point = Point<3>(-0.75, -0.75, -0.75);
template <int dim>
double RightHandSide<dim>::value(const Point<dim>& p,
const unsigned int component) const
{
(void)component;
Assert(component == 0, ExcIndexRange(component, 0, 1));
const double diameter = 0.1;
return ((p - center_point).norm_square() < diameter * diameter
? .1 / std::pow(diameter, dim)
: 0);
}
template <int dim>
void RightHandSide<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = RightHandSide<dim>::value(points[i], component);
}
template <int dim>
class BoundaryValues : public Function<dim> {
public:
BoundaryValues() : Function<dim>() {}
virtual double value(const Point<dim>& p,
const unsigned int component = 0) const;
virtual void value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component = 0) const;
};
template <int dim>
double BoundaryValues<dim>::value(const Point<dim>& p,
const unsigned int component) const
{
(void)component;
Assert(component == 0, ExcIndexRange(component, 0, 1));
const double sine_term =
std::sin(16 * numbers::PI * std::sqrt(p.norm_square()));
const double weight = std::exp(-5 * p.norm_square()) / std::exp(-5.);
return sine_term * weight;
}
template <int dim>
void BoundaryValues<dim>::value_list(const std::vector<Point<dim>>& points,
std::vector<double>& values,
const unsigned int component) const
{
Assert(values.size() == points.size(),
ExcDimensionMismatch(values.size(), points.size()));
for (unsigned int i = 0; i < points.size(); ++i)
values[i] = BoundaryValues<dim>::value(points[i], component);
}
class GradientEstimation {
public:
template <int dim>
static void estimate(const DoFHandler<dim>& dof,
const Vector<double>& solution,
Vector<float>& error_per_cell);
DeclException2(ExcInvalidVectorLength, int, int,
<< "Vector has length " << arg1 << ", but should have "
<< arg2);
DeclException0(ExcInsufficientDirections);
private:
template <int dim>
struct EstimateScratchData {
EstimateScratchData(const FiniteElement<dim>& fe,
const Vector<double>& solution,
Vector<float>& error_per_cell);
EstimateScratchData(const EstimateScratchData& data);
FEValues<dim> fe_midpoint_value;
const Vector<double>& solution;
Vector<float>& error_per_cell;
};
struct EstimateCopyData {};
template <int dim>
static void estimate_cell(
const typename DoFHandler<dim>::active_cell_iterator& cell,
EstimateScratchData<dim>& scratch_data,
const EstimateCopyData& copy_data);
};
template <int dim>
AdvectionProblem<dim>::AdvectionProblem() : dof_handler(triangulation), fe(1)
{}
template <int dim>
AdvectionProblem<dim>::~AdvectionProblem()
{
dof_handler.clear();
}
template <int dim>
void AdvectionProblem<dim>::setup_system()
{
dof_handler.distribute_dofs(fe);
hanging_node_constraints.clear();
DoFTools::make_hanging_node_constraints(dof_handler,
hanging_node_constraints);
hanging_node_constraints.close();
DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
DoFTools::make_sparsity_pattern(dof_handler, dsp, hanging_node_constraints,
/*keep_constrained_dofs = */ true);
sparsity_pattern.copy_from(dsp);
system_matrix.reinit(sparsity_pattern);
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
}
template <int dim>
void AdvectionProblem<dim>::assemble_system()
{
WorkStream::run(dof_handler.begin_active(), dof_handler.end(), *this,
&AdvectionProblem::local_assemble_system,
&AdvectionProblem::copy_local_to_global,
AssemblyScratchData(fe), AssemblyCopyData());
hanging_node_constraints.condense(system_matrix);
hanging_node_constraints.condense(system_rhs);
}
template <int dim>
AdvectionProblem<dim>::AssemblyScratchData::AssemblyScratchData(
const FiniteElement<dim>& fe)
: fe_values(fe, QGauss<dim>(2),
update_values | update_gradients | update_quadrature_points |
update_JxW_values),
fe_face_values(fe, QGauss<dim - 1>(2),
update_values | update_quadrature_points |
update_JxW_values | update_normal_vectors)
{}
template <int dim>
AdvectionProblem<dim>::AssemblyScratchData::AssemblyScratchData(
const AssemblyScratchData& scratch_data)
: fe_values(scratch_data.fe_values.get_fe(),
scratch_data.fe_values.get_quadrature(),
update_values | update_gradients | update_quadrature_points |
update_JxW_values),
fe_face_values(scratch_data.fe_face_values.get_fe(),
scratch_data.fe_face_values.get_quadrature(),
update_values | update_quadrature_points |
update_JxW_values | update_normal_vectors)
{}
template <int dim>
void AdvectionProblem<dim>::local_assemble_system(
const typename DoFHandler<dim>::active_cell_iterator& cell,
AssemblyScratchData& scratch_data, AssemblyCopyData& copy_data)
{
const AdvectionField<dim> advection_field;
const RightHandSide<dim> right_hand_side;
const BoundaryValues<dim> boundary_values;
const unsigned int dofs_per_cell = fe.dofs_per_cell;
const unsigned int n_q_points =
scratch_data.fe_values.get_quadrature().size();
const unsigned int n_face_q_points =
scratch_data.fe_face_values.get_quadrature().size();
copy_data.cell_matrix.reinit(dofs_per_cell, dofs_per_cell);
copy_data.cell_rhs.reinit(dofs_per_cell);
copy_data.local_dof_indices.resize(dofs_per_cell);
std::vector<double> rhs_values(n_q_points);
std::vector<Tensor<1, dim>> advection_directions(n_q_points);
std::vector<double> face_boundary_values(n_face_q_points);
std::vector<Tensor<1, dim>> face_advection_directions(n_face_q_points);
scratch_data.fe_values.reinit(cell);
advection_field.value_list(scratch_data.fe_values.get_quadrature_points(),
advection_directions);
right_hand_side.value_list(scratch_data.fe_values.get_quadrature_points(),
rhs_values);
const double delta = 0.1 * cell->diameter();
for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
for (unsigned int i = 0; i < dofs_per_cell; ++i) {
for (unsigned int j = 0; j < dofs_per_cell; ++j)
copy_data.cell_matrix(i, j) +=
((advection_directions[q_point] *
scratch_data.fe_values.shape_grad(j, q_point) *
(scratch_data.fe_values.shape_value(i, q_point) +
delta *
(advection_directions[q_point] *
scratch_data.fe_values.shape_grad(i, q_point)))) *
scratch_data.fe_values.JxW(q_point));
copy_data.cell_rhs(i) +=
((scratch_data.fe_values.shape_value(i, q_point) +
delta * (advection_directions[q_point] *
scratch_data.fe_values.shape_grad(i, q_point))) *
rhs_values[q_point] * scratch_data.fe_values.JxW(q_point));
}
for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell;
++face)
if (cell->face(face)->at_boundary()) {
scratch_data.fe_face_values.reinit(cell, face);
boundary_values.value_list(
scratch_data.fe_face_values.get_quadrature_points(),
face_boundary_values);
advection_field.value_list(
scratch_data.fe_face_values.get_quadrature_points(),
face_advection_directions);
for (unsigned int q_point = 0; q_point < n_face_q_points; ++q_point)
if (scratch_data.fe_face_values.normal_vector(q_point) *
face_advection_directions[q_point] <
0)
for (unsigned int i = 0; i < dofs_per_cell; ++i) {
for (unsigned int j = 0; j < dofs_per_cell; ++j)
copy_data.cell_matrix(i, j) -=
(face_advection_directions[q_point] *
scratch_data.fe_face_values.normal_vector(
q_point) *
scratch_data.fe_face_values.shape_value(
i, q_point) *
scratch_data.fe_face_values.shape_value(
j, q_point) *
scratch_data.fe_face_values.JxW(q_point));
copy_data.cell_rhs(i) -=
(face_advection_directions[q_point] *
scratch_data.fe_face_values.normal_vector(
q_point) *
face_boundary_values[q_point] *
scratch_data.fe_face_values.shape_value(i,
q_point) *
scratch_data.fe_face_values.JxW(q_point));
}
}
cell->get_dof_indices(copy_data.local_dof_indices);
}
template <int dim>
void AdvectionProblem<dim>::copy_local_to_global(
const AssemblyCopyData& copy_data)
{
for (unsigned int i = 0; i < copy_data.local_dof_indices.size(); ++i) {
for (unsigned int j = 0; j < copy_data.local_dof_indices.size(); ++j)
system_matrix.add(copy_data.local_dof_indices[i],
copy_data.local_dof_indices[j],
copy_data.cell_matrix(i, j));
system_rhs(copy_data.local_dof_indices[i]) += copy_data.cell_rhs(i);
}
}
template <int dim>
void AdvectionProblem<dim>::solve()
{
Assert(system_matrix.m() == system_matrix.n(), ExcNotQuadratic());
auto num_rows = system_matrix.m();
std::vector<double> rhs(num_rows);
std::copy(system_rhs.begin(), system_rhs.begin() + num_rows, rhs.begin());
using vec = gko::matrix::Dense<>;
using mtx = gko::matrix::Csr<>;
using bicgstab = gko::solver::Bicgstab<>;
using val_array = gko::array<double>;
std::shared_ptr<gko::Executor> exec = gko::ReferenceExecutor::create();
auto b = vec::create(exec, gko::dim<2>(num_rows, 1),
val_array::view(exec, num_rows, rhs.data()), 1);
auto x = vec::create(exec, gko::dim<2>(num_rows, 1));
auto A = mtx::create(exec, gko::dim<2>(num_rows),
system_matrix.n_nonzero_elements());
mtx::value_type* values = A->get_values();
mtx::index_type* row_ptr = A->get_row_ptrs();
mtx::index_type* col_idx = A->get_col_idxs();
row_ptr[0] = 0;
for (auto row = 1; row <= num_rows; ++row) {
row_ptr[row] = row_ptr[row - 1] + system_matrix.get_row_length(row - 1);
}
std::vector<mtx::index_type> ptrs(num_rows + 1);
std::copy(A->get_row_ptrs(), A->get_row_ptrs() + num_rows + 1,
ptrs.begin());
for (auto row = 0; row < system_matrix.m(); ++row) {
for (auto p = system_matrix.begin(row); p != system_matrix.end(row);
++p) {
col_idx[ptrs[row]] = p->column();
values[ptrs[row]] = p->value();
++ptrs[row];
}
}
auto solver_gen =
bicgstab::build()
.with_criteria(
gko::stop::Iteration::build().with_max_iters(1000),
gko::stop::ResidualNorm<>::build().with_reduction_factor(1e-12))
.with_preconditioner(bj::build())
.on(exec);
auto solver = solver_gen->generate(gko::give(A));
solver->apply(b, x);
std::copy(x->get_values(), x->get_values() + num_rows, solution.begin());
/******************************************************
* deal.ii internal solver. Here for reference.
SolverControl solver_control (1000, 1e-12);
SolverBicgstab<> bicgstab (solver_control);
PreconditionJacobi<> preconditioner;
preconditioner.initialize(system_matrix, 1.0);
bicgstab.solve (system_matrix, solution, system_rhs,
preconditioner);
*******************************************************/
hanging_node_constraints.distribute(solution);
}
template <int dim>
void AdvectionProblem<dim>::refine_grid()
{
Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
GradientEstimation::estimate(dof_handler, solution,
estimated_error_per_cell);
GridRefinement::refine_and_coarsen_fixed_number(
triangulation, estimated_error_per_cell, 0.5, 0.03);
triangulation.execute_coarsening_and_refinement();
}
template <int dim>
void AdvectionProblem<dim>::output_results(const unsigned int cycle) const
{
{
GridOut grid_out;
std::ofstream output("grid-" + std::to_string(cycle) + ".eps");
grid_out.write_eps(triangulation, output);
}
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler);
data_out.add_data_vector(solution, "solution");
data_out.build_patches();
std::ofstream output("solution-" + std::to_string(cycle) + ".vtk");
data_out.write_vtk(output);
}
}
template <int dim>
void AdvectionProblem<dim>::run()
{
for (unsigned int cycle = 0; cycle < 6; ++cycle) {
std::cout << "Cycle " << cycle << ':' << std::endl;
if (cycle == 0) {
GridGenerator::hyper_cube(triangulation, -1, 1);
triangulation.refine_global(4);
} else {
refine_grid();
}
std::cout << " Number of active cells: "
<< triangulation.n_active_cells() << std::endl;
setup_system();
std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()
<< std::endl;
assemble_system();
solve();
output_results(cycle);
}
}
template <int dim>
GradientEstimation::EstimateScratchData<dim>::EstimateScratchData(
const FiniteElement<dim>& fe, const Vector<double>& solution,
Vector<float>& error_per_cell)
: fe_midpoint_value(fe, QMidpoint<dim>(),
update_values | update_quadrature_points),
solution(solution),
error_per_cell(error_per_cell)
{}
template <int dim>
GradientEstimation::EstimateScratchData<dim>::EstimateScratchData(
const EstimateScratchData& scratch_data)
: fe_midpoint_value(scratch_data.fe_midpoint_value.get_fe(),
scratch_data.fe_midpoint_value.get_quadrature(),
update_values | update_quadrature_points),
solution(scratch_data.solution),
error_per_cell(scratch_data.error_per_cell)
{}
template <int dim>
void GradientEstimation::estimate(const DoFHandler<dim>& dof_handler,
const Vector<double>& solution,
Vector<float>& error_per_cell)
{
Assert(error_per_cell.size() ==
dof_handler.get_triangulation().n_active_cells(),
ExcInvalidVectorLength(
error_per_cell.size(),
dof_handler.get_triangulation().n_active_cells()));
WorkStream::run(dof_handler.begin_active(), dof_handler.end(),
&GradientEstimation::template estimate_cell<dim>,
std::function<void(const EstimateCopyData&)>(),
EstimateScratchData<dim>(dof_handler.get_fe(), solution,
error_per_cell),
EstimateCopyData());
}
template <int dim>
void GradientEstimation::estimate_cell(
const typename DoFHandler<dim>::active_cell_iterator& cell,
EstimateScratchData<dim>& scratch_data, const EstimateCopyData&)
{
Tensor<2, dim> Y;
std::vector<typename DoFHandler<dim>::active_cell_iterator>
active_neighbors;
active_neighbors.reserve(GeometryInfo<dim>::faces_per_cell *
GeometryInfo<dim>::max_children_per_face);
scratch_data.fe_midpoint_value.reinit(cell);
Tensor<1, dim> projected_gradient;
active_neighbors.clear();
for (unsigned int face_no = 0; face_no < GeometryInfo<dim>::faces_per_cell;
++face_no)
if (!cell->at_boundary(face_no)) {
const typename DoFHandler<dim>::face_iterator face =
cell->face(face_no);
const typename DoFHandler<dim>::cell_iterator neighbor =
cell->neighbor(face_no);
if (neighbor->active())
active_neighbors.push_back(neighbor);
else {
if (dim == 1) {
typename DoFHandler<dim>::cell_iterator neighbor_child =
neighbor;
while (neighbor_child->has_children())
neighbor_child =
neighbor_child->child(face_no == 0 ? 1 : 0);
Assert(
neighbor_child->neighbor(face_no == 0 ? 1 : 0) == cell,
ExcInternalError());
active_neighbors.push_back(neighbor_child);
} else
for (unsigned int subface_no = 0;
subface_no < face->n_children(); ++subface_no)
active_neighbors.push_back(
cell->neighbor_child_on_subface(face_no,
subface_no));
}
}
const Point<dim> this_center =
scratch_data.fe_midpoint_value.quadrature_point(0);
std::vector<double> this_midpoint_value(1);
scratch_data.fe_midpoint_value.get_function_values(scratch_data.solution,
this_midpoint_value);
std::vector<double> neighbor_midpoint_value(1);
typename std::vector<typename DoFHandler<dim>::active_cell_iterator>::
const_iterator neighbor_ptr = active_neighbors.begin();
for (; neighbor_ptr != active_neighbors.end(); ++neighbor_ptr) {
const typename DoFHandler<dim>::active_cell_iterator neighbor =
*neighbor_ptr;
scratch_data.fe_midpoint_value.reinit(neighbor);
const Point<dim> neighbor_center =
scratch_data.fe_midpoint_value.quadrature_point(0);
scratch_data.fe_midpoint_value.get_function_values(
scratch_data.solution, neighbor_midpoint_value);
Tensor<1, dim> y = neighbor_center - this_center;
const double distance = y.norm();
y /= distance;
for (unsigned int i = 0; i < dim; ++i)
for (unsigned int j = 0; j < dim; ++j) Y[i][j] += y[i] * y[j];
projected_gradient +=
(neighbor_midpoint_value[0] - this_midpoint_value[0]) / distance *
y;
}
AssertThrow(determinant(Y) != 0, ExcInsufficientDirections());
const Tensor<2, dim> Y_inverse = invert(Y);
Tensor<1, dim> gradient = Y_inverse * projected_gradient;
scratch_data.error_per_cell(cell->active_cell_index()) =
(std::pow(cell->diameter(), 1 + 1.0 * dim / 2) *
std::sqrt(gradient.norm_square()));
}
} // namespace Step9
int main()
{
try {
dealii::MultithreadInfo::set_thread_limit();
Step9::AdvectionProblem<2> advection_problem_2d;
advection_problem_2d.run();
} catch (std::exception& exc) {
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
} catch (...) {
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}
gko::matrix::Csr
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:28
gko::log::profile_event_category::solver
Solver events.
gko::give
std::remove_reference< OwningPointer >::type && give(OwningPointer &&p)
Marks that the object pointed to by p can be given to the callee.
Definition: utils_helper.hpp:247
gko::matrix::Dense
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:19
gko::solver::Bicgstab
BiCGSTAB or the Bi-Conjugate Gradient-Stabilized is a Krylov subspace solver.
Definition: bicgstab.hpp:51
gko::preconditioner::Jacobi
A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal...
Definition: jacobi.hpp:187
gko::array
An array is a container which encapsulates fixed-sized arrays, stored on the Executor tied to the arr...
Definition: array.hpp:26
gko::stop::ResidualNorm
The ResidualNorm class is a stopping criterion which stops the iteration process when the actual resi...
Definition: residual_norm.hpp:111
gko::dim< 2 >
gko::solver::initial_guess_mode::rhs
the input is right hand side
gko::solver::multigrid::cycle
cycle
cycle defines which kind of multigrid cycle can be used.
Definition: multigrid.hpp:54