Ginkgo  Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
csr.hpp
1 // SPDX-FileCopyrightText: 2017 - 2024 The Ginkgo authors
2 //
3 // SPDX-License-Identifier: BSD-3-Clause
4 
5 #ifndef GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
6 #define GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
7 
8 
9 #include <ginkgo/core/base/array.hpp>
10 #include <ginkgo/core/base/index_set.hpp>
11 #include <ginkgo/core/base/lin_op.hpp>
12 #include <ginkgo/core/base/math.hpp>
13 #include <ginkgo/core/matrix/permutation.hpp>
14 #include <ginkgo/core/matrix/scaled_permutation.hpp>
15 
16 
17 namespace gko {
18 namespace matrix {
19 
20 
21 template <typename ValueType>
22 class Dense;
23 
24 template <typename ValueType>
25 class Diagonal;
26 
27 template <typename ValueType, typename IndexType>
28 class Coo;
29 
30 template <typename ValueType, typename IndexType>
31 class Ell;
32 
33 template <typename ValueType, typename IndexType>
34 class Hybrid;
35 
36 template <typename ValueType, typename IndexType>
37 class Sellp;
38 
39 template <typename ValueType, typename IndexType>
41 
42 template <typename ValueType, typename IndexType>
43 class Csr;
44 
45 template <typename ValueType, typename IndexType>
46 class Fbcsr;
47 
48 template <typename ValueType, typename IndexType>
49 class CsrBuilder;
50 
51 
52 namespace detail {
53 
54 
55 template <typename ValueType = default_precision, typename IndexType = int32>
56 void strategy_rebuild_helper(Csr<ValueType, IndexType>* result);
57 
58 
59 } // namespace detail
60 
61 
100 template <typename ValueType = default_precision, typename IndexType = int32>
101 class Csr : public EnableLinOp<Csr<ValueType, IndexType>>,
102  public ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>,
103  public ConvertibleTo<Dense<ValueType>>,
104  public ConvertibleTo<Coo<ValueType, IndexType>>,
105  public ConvertibleTo<Ell<ValueType, IndexType>>,
106  public ConvertibleTo<Fbcsr<ValueType, IndexType>>,
107  public ConvertibleTo<Hybrid<ValueType, IndexType>>,
108  public ConvertibleTo<Sellp<ValueType, IndexType>>,
109  public ConvertibleTo<SparsityCsr<ValueType, IndexType>>,
110  public DiagonalExtractable<ValueType>,
111  public ReadableFromMatrixData<ValueType, IndexType>,
112  public WritableToMatrixData<ValueType, IndexType>,
113  public Transposable,
114  public Permutable<IndexType>,
116  remove_complex<Csr<ValueType, IndexType>>>,
117  public ScaledIdentityAddable {
118  friend class EnablePolymorphicObject<Csr, LinOp>;
119  friend class Coo<ValueType, IndexType>;
120  friend class Dense<ValueType>;
121  friend class Diagonal<ValueType>;
122  friend class Ell<ValueType, IndexType>;
123  friend class Hybrid<ValueType, IndexType>;
124  friend class Sellp<ValueType, IndexType>;
125  friend class SparsityCsr<ValueType, IndexType>;
126  friend class Fbcsr<ValueType, IndexType>;
127  friend class CsrBuilder<ValueType, IndexType>;
128  friend class Csr<to_complex<ValueType>, IndexType>;
129 
130 public:
133  using ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>::convert_to;
134  using ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>::move_to;
135  using ConvertibleTo<Dense<ValueType>>::convert_to;
136  using ConvertibleTo<Dense<ValueType>>::move_to;
137  using ConvertibleTo<Coo<ValueType, IndexType>>::convert_to;
139  using ConvertibleTo<Ell<ValueType, IndexType>>::convert_to;
150 
151  using value_type = ValueType;
152  using index_type = IndexType;
153  using transposed_type = Csr<ValueType, IndexType>;
154  using mat_data = matrix_data<ValueType, IndexType>;
155  using device_mat_data = device_matrix_data<ValueType, IndexType>;
156  using absolute_type = remove_complex<Csr>;
157 
158  class automatical;
159 
167  friend class automatical;
168 
169  public:
175  strategy_type(std::string name) : name_(name) {}
176 
177  virtual ~strategy_type() = default;
178 
184  std::string get_name() { return name_; }
185 
192  virtual void process(const array<index_type>& mtx_row_ptrs,
193  array<index_type>* mtx_srow) = 0;
194 
202  virtual int64_t clac_size(const int64_t nnz) = 0;
203 
208  virtual std::shared_ptr<strategy_type> copy() = 0;
209 
210  protected:
211  void set_name(std::string name) { name_ = name; }
212 
213  private:
214  std::string name_;
215  };
216 
223  class classical : public strategy_type {
224  public:
228  classical() : strategy_type("classical"), max_length_per_row_(0) {}
229 
230  void process(const array<index_type>& mtx_row_ptrs,
231  array<index_type>* mtx_srow) override
232  {
233  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
234  array<index_type> row_ptrs_host(host_mtx_exec);
235  const bool is_mtx_on_host{host_mtx_exec ==
236  mtx_row_ptrs.get_executor()};
237  const index_type* row_ptrs{};
238  if (is_mtx_on_host) {
239  row_ptrs = mtx_row_ptrs.get_const_data();
240  } else {
241  row_ptrs_host = mtx_row_ptrs;
242  row_ptrs = row_ptrs_host.get_const_data();
243  }
244  auto num_rows = mtx_row_ptrs.get_size() - 1;
245  max_length_per_row_ = 0;
246  for (size_type i = 0; i < num_rows; i++) {
247  max_length_per_row_ = std::max(max_length_per_row_,
248  row_ptrs[i + 1] - row_ptrs[i]);
249  }
250  }
251 
252  int64_t clac_size(const int64_t nnz) override { return 0; }
253 
254  index_type get_max_length_per_row() const noexcept
255  {
256  return max_length_per_row_;
257  }
258 
259  std::shared_ptr<strategy_type> copy() override
260  {
261  return std::make_shared<classical>();
262  }
263 
264  private:
265  index_type max_length_per_row_;
266  };
267 
273  class merge_path : public strategy_type {
274  public:
278  merge_path() : strategy_type("merge_path") {}
279 
280  void process(const array<index_type>& mtx_row_ptrs,
281  array<index_type>* mtx_srow) override
282  {}
283 
284  int64_t clac_size(const int64_t nnz) override { return 0; }
285 
286  std::shared_ptr<strategy_type> copy() override
287  {
288  return std::make_shared<merge_path>();
289  }
290  };
291 
298  class cusparse : public strategy_type {
299  public:
303  cusparse() : strategy_type("cusparse") {}
304 
305  void process(const array<index_type>& mtx_row_ptrs,
306  array<index_type>* mtx_srow) override
307  {}
308 
309  int64_t clac_size(const int64_t nnz) override { return 0; }
310 
311  std::shared_ptr<strategy_type> copy() override
312  {
313  return std::make_shared<cusparse>();
314  }
315  };
316 
322  class sparselib : public strategy_type {
323  public:
327  sparselib() : strategy_type("sparselib") {}
328 
329  void process(const array<index_type>& mtx_row_ptrs,
330  array<index_type>* mtx_srow) override
331  {}
332 
333  int64_t clac_size(const int64_t nnz) override { return 0; }
334 
335  std::shared_ptr<strategy_type> copy() override
336  {
337  return std::make_shared<sparselib>();
338  }
339  };
340 
344  class load_balance : public strategy_type {
345  public:
352  [[deprecated]] load_balance()
353  : load_balance(std::move(
355  {}
356 
362  load_balance(std::shared_ptr<const CudaExecutor> exec)
363  : load_balance(exec->get_num_warps(), exec->get_warp_size())
364  {}
365 
371  load_balance(std::shared_ptr<const HipExecutor> exec)
372  : load_balance(exec->get_num_warps(), exec->get_warp_size(), false)
373  {}
374 
382  load_balance(std::shared_ptr<const DpcppExecutor> exec)
383  : load_balance(exec->get_num_subgroups(), 32, false, "intel")
384  {}
385 
397  load_balance(int64_t nwarps, int warp_size = 32,
398  bool cuda_strategy = true,
399  std::string strategy_name = "none")
400  : strategy_type("load_balance"),
401  nwarps_(nwarps),
402  warp_size_(warp_size),
403  cuda_strategy_(cuda_strategy),
404  strategy_name_(strategy_name)
405  {}
406 
407  void process(const array<index_type>& mtx_row_ptrs,
408  array<index_type>* mtx_srow) override
409  {
410  auto nwarps = mtx_srow->get_size();
411 
412  if (nwarps > 0) {
413  auto host_srow_exec = mtx_srow->get_executor()->get_master();
414  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
415  const bool is_srow_on_host{host_srow_exec ==
416  mtx_srow->get_executor()};
417  const bool is_mtx_on_host{host_mtx_exec ==
418  mtx_row_ptrs.get_executor()};
419  array<index_type> row_ptrs_host(host_mtx_exec);
420  array<index_type> srow_host(host_srow_exec);
421  const index_type* row_ptrs{};
422  index_type* srow{};
423  if (is_srow_on_host) {
424  srow = mtx_srow->get_data();
425  } else {
426  srow_host = *mtx_srow;
427  srow = srow_host.get_data();
428  }
429  if (is_mtx_on_host) {
430  row_ptrs = mtx_row_ptrs.get_const_data();
431  } else {
432  row_ptrs_host = mtx_row_ptrs;
433  row_ptrs = row_ptrs_host.get_const_data();
434  }
435  for (size_type i = 0; i < nwarps; i++) {
436  srow[i] = 0;
437  }
438  const auto num_rows = mtx_row_ptrs.get_size() - 1;
439  const auto num_elems = row_ptrs[num_rows];
440  const auto bucket_divider =
441  num_elems > 0 ? ceildiv(num_elems, warp_size_) : 1;
442  for (size_type i = 0; i < num_rows; i++) {
443  auto bucket =
444  ceildiv((ceildiv(row_ptrs[i + 1], warp_size_) * nwarps),
445  bucket_divider);
446  if (bucket < nwarps) {
447  srow[bucket]++;
448  }
449  }
450  // find starting row for thread i
451  for (size_type i = 1; i < nwarps; i++) {
452  srow[i] += srow[i - 1];
453  }
454  if (!is_srow_on_host) {
455  *mtx_srow = srow_host;
456  }
457  }
458  }
459 
460  int64_t clac_size(const int64_t nnz) override
461  {
462  if (warp_size_ > 0) {
463  int multiple = 8;
464  if (nnz >= static_cast<int64_t>(2e8)) {
465  multiple = 2048;
466  } else if (nnz >= static_cast<int64_t>(2e7)) {
467  multiple = 512;
468  } else if (nnz >= static_cast<int64_t>(2e6)) {
469  multiple = 128;
470  } else if (nnz >= static_cast<int64_t>(2e5)) {
471  multiple = 32;
472  }
473  if (strategy_name_ == "intel") {
474  multiple = 8;
475  if (nnz >= static_cast<int64_t>(2e8)) {
476  multiple = 256;
477  } else if (nnz >= static_cast<int64_t>(2e7)) {
478  multiple = 32;
479  }
480  }
481 #if GINKGO_HIP_PLATFORM_HCC
482  if (!cuda_strategy_) {
483  multiple = 8;
484  if (nnz >= static_cast<int64_t>(1e7)) {
485  multiple = 64;
486  } else if (nnz >= static_cast<int64_t>(1e6)) {
487  multiple = 16;
488  }
489  }
490 #endif // GINKGO_HIP_PLATFORM_HCC
491 
492  auto nwarps = nwarps_ * multiple;
493  return min(ceildiv(nnz, warp_size_), nwarps);
494  } else {
495  return 0;
496  }
497  }
498 
499  std::shared_ptr<strategy_type> copy() override
500  {
501  return std::make_shared<load_balance>(
502  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
503  }
504 
505  private:
506  int64_t nwarps_;
507  int warp_size_;
508  bool cuda_strategy_;
509  std::string strategy_name_;
510  };
511 
512  class automatical : public strategy_type {
513  public:
514  /* Use imbalance strategy when the maximum number of nonzero per row is
515  * more than 1024 on NVIDIA hardware */
516  const index_type nvidia_row_len_limit = 1024;
517  /* Use imbalance strategy when the matrix has more more than 1e6 on
518  * NVIDIA hardware */
519  const index_type nvidia_nnz_limit{static_cast<index_type>(1e6)};
520  /* Use imbalance strategy when the maximum number of nonzero per row is
521  * more than 768 on AMD hardware */
522  const index_type amd_row_len_limit = 768;
523  /* Use imbalance strategy when the matrix has more more than 1e8 on AMD
524  * hardware */
525  const index_type amd_nnz_limit{static_cast<index_type>(1e8)};
526  /* Use imbalance strategy when the maximum number of nonzero per row is
527  * more than 25600 on Intel hardware */
528  const index_type intel_row_len_limit = 25600;
529  /* Use imbalance strategy when the matrix has more more than 3e8 on
530  * Intel hardware */
531  const index_type intel_nnz_limit{static_cast<index_type>(3e8)};
532 
533  public:
540  [[deprecated]] automatical()
541  : automatical(std::move(
543  {}
544 
550  automatical(std::shared_ptr<const CudaExecutor> exec)
551  : automatical(exec->get_num_warps(), exec->get_warp_size())
552  {}
553 
559  automatical(std::shared_ptr<const HipExecutor> exec)
560  : automatical(exec->get_num_warps(), exec->get_warp_size(), false)
561  {}
562 
570  automatical(std::shared_ptr<const DpcppExecutor> exec)
571  : automatical(exec->get_num_subgroups(), 32, false, "intel")
572  {}
573 
585  automatical(int64_t nwarps, int warp_size = 32,
586  bool cuda_strategy = true,
587  std::string strategy_name = "none")
588  : strategy_type("automatical"),
589  nwarps_(nwarps),
590  warp_size_(warp_size),
591  cuda_strategy_(cuda_strategy),
592  strategy_name_(strategy_name),
593  max_length_per_row_(0)
594  {}
595 
596  void process(const array<index_type>& mtx_row_ptrs,
597  array<index_type>* mtx_srow) override
598  {
599  // if the number of stored elements is larger than <nnz_limit> or
600  // the maximum number of stored elements per row is larger than
601  // <row_len_limit>, use load_balance otherwise use classical
602  index_type nnz_limit = nvidia_nnz_limit;
603  index_type row_len_limit = nvidia_row_len_limit;
604  if (strategy_name_ == "intel") {
605  nnz_limit = intel_nnz_limit;
606  row_len_limit = intel_row_len_limit;
607  }
608 #if GINKGO_HIP_PLATFORM_HCC
609  if (!cuda_strategy_) {
610  nnz_limit = amd_nnz_limit;
611  row_len_limit = amd_row_len_limit;
612  }
613 #endif // GINKGO_HIP_PLATFORM_HCC
614  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
615  const bool is_mtx_on_host{host_mtx_exec ==
616  mtx_row_ptrs.get_executor()};
617  array<index_type> row_ptrs_host(host_mtx_exec);
618  const index_type* row_ptrs{};
619  if (is_mtx_on_host) {
620  row_ptrs = mtx_row_ptrs.get_const_data();
621  } else {
622  row_ptrs_host = mtx_row_ptrs;
623  row_ptrs = row_ptrs_host.get_const_data();
624  }
625  const auto num_rows = mtx_row_ptrs.get_size() - 1;
626  if (row_ptrs[num_rows] > nnz_limit) {
627  load_balance actual_strategy(nwarps_, warp_size_,
628  cuda_strategy_, strategy_name_);
629  if (is_mtx_on_host) {
630  actual_strategy.process(mtx_row_ptrs, mtx_srow);
631  } else {
632  actual_strategy.process(row_ptrs_host, mtx_srow);
633  }
634  this->set_name(actual_strategy.get_name());
635  } else {
636  index_type maxnum = 0;
637  for (size_type i = 0; i < num_rows; i++) {
638  maxnum = std::max(maxnum, row_ptrs[i + 1] - row_ptrs[i]);
639  }
640  if (maxnum > row_len_limit) {
641  load_balance actual_strategy(
642  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
643  if (is_mtx_on_host) {
644  actual_strategy.process(mtx_row_ptrs, mtx_srow);
645  } else {
646  actual_strategy.process(row_ptrs_host, mtx_srow);
647  }
648  this->set_name(actual_strategy.get_name());
649  } else {
650  classical actual_strategy;
651  if (is_mtx_on_host) {
652  actual_strategy.process(mtx_row_ptrs, mtx_srow);
653  max_length_per_row_ =
654  actual_strategy.get_max_length_per_row();
655  } else {
656  actual_strategy.process(row_ptrs_host, mtx_srow);
657  max_length_per_row_ =
658  actual_strategy.get_max_length_per_row();
659  }
660  this->set_name(actual_strategy.get_name());
661  }
662  }
663  }
664 
665  int64_t clac_size(const int64_t nnz) override
666  {
667  return std::make_shared<load_balance>(
668  nwarps_, warp_size_, cuda_strategy_, strategy_name_)
669  ->clac_size(nnz);
670  }
671 
672  index_type get_max_length_per_row() const noexcept
673  {
674  return max_length_per_row_;
675  }
676 
677  std::shared_ptr<strategy_type> copy() override
678  {
679  return std::make_shared<automatical>(
680  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
681  }
682 
683  private:
684  int64_t nwarps_;
685  int warp_size_;
686  bool cuda_strategy_;
687  std::string strategy_name_;
688  index_type max_length_per_row_;
689  };
690 
691  friend class Csr<next_precision<ValueType>, IndexType>;
692 
693  void convert_to(
694  Csr<next_precision<ValueType>, IndexType>* result) const override;
695 
696  void move_to(Csr<next_precision<ValueType>, IndexType>* result) override;
697 
698  void convert_to(Dense<ValueType>* other) const override;
699 
700  void move_to(Dense<ValueType>* other) override;
701 
702  void convert_to(Coo<ValueType, IndexType>* result) const override;
703 
704  void move_to(Coo<ValueType, IndexType>* result) override;
705 
706  void convert_to(Ell<ValueType, IndexType>* result) const override;
707 
708  void move_to(Ell<ValueType, IndexType>* result) override;
709 
710  void convert_to(Fbcsr<ValueType, IndexType>* result) const override;
711 
712  void move_to(Fbcsr<ValueType, IndexType>* result) override;
713 
714  void convert_to(Hybrid<ValueType, IndexType>* result) const override;
715 
716  void move_to(Hybrid<ValueType, IndexType>* result) override;
717 
718  void convert_to(Sellp<ValueType, IndexType>* result) const override;
719 
720  void move_to(Sellp<ValueType, IndexType>* result) override;
721 
722  void convert_to(SparsityCsr<ValueType, IndexType>* result) const override;
723 
724  void move_to(SparsityCsr<ValueType, IndexType>* result) override;
725 
726  void read(const mat_data& data) override;
727 
728  void read(const device_mat_data& data) override;
729 
730  void read(device_mat_data&& data) override;
731 
732  void write(mat_data& data) const override;
733 
734  std::unique_ptr<LinOp> transpose() const override;
735 
736  std::unique_ptr<LinOp> conj_transpose() const override;
737 
752  std::unique_ptr<Csr> permute(
753  ptr_param<const Permutation<index_type>> permutation,
755 
769  std::unique_ptr<Csr> permute(
770  ptr_param<const Permutation<index_type>> row_permutation,
771  ptr_param<const Permutation<index_type>> column_permutation,
772  bool invert = false) const;
773 
783  std::unique_ptr<Csr> scale_permute(
786 
799  std::unique_ptr<Csr> scale_permute(
801  row_permutation,
803  column_permutation,
804  bool invert = false) const;
805 
806  std::unique_ptr<LinOp> permute(
807  const array<IndexType>* permutation_indices) const override;
808 
809  std::unique_ptr<LinOp> inverse_permute(
810  const array<IndexType>* inverse_permutation_indices) const override;
811 
812  std::unique_ptr<LinOp> row_permute(
813  const array<IndexType>* permutation_indices) const override;
814 
815  std::unique_ptr<LinOp> column_permute(
816  const array<IndexType>* permutation_indices) const override;
817 
818  std::unique_ptr<LinOp> inverse_row_permute(
819  const array<IndexType>* inverse_permutation_indices) const override;
820 
821  std::unique_ptr<LinOp> inverse_column_permute(
822  const array<IndexType>* inverse_permutation_indices) const override;
823 
824  std::unique_ptr<Diagonal<ValueType>> extract_diagonal() const override;
825 
826  std::unique_ptr<absolute_type> compute_absolute() const override;
827 
828  void compute_absolute_inplace() override;
829 
833  void sort_by_column_index();
834 
835  /*
836  * Tests if all row entry pairs (value, col_idx) are sorted by column index
837  *
838  * @returns True if all row entry pairs (value, col_idx) are sorted by
839  * column index
840  */
841  bool is_sorted_by_column_index() const;
842 
848  value_type* get_values() noexcept { return values_.get_data(); }
849 
857  const value_type* get_const_values() const noexcept
858  {
859  return values_.get_const_data();
860  }
861 
867  index_type* get_col_idxs() noexcept { return col_idxs_.get_data(); }
868 
876  const index_type* get_const_col_idxs() const noexcept
877  {
878  return col_idxs_.get_const_data();
879  }
880 
886  index_type* get_row_ptrs() noexcept { return row_ptrs_.get_data(); }
887 
895  const index_type* get_const_row_ptrs() const noexcept
896  {
897  return row_ptrs_.get_const_data();
898  }
899 
905  index_type* get_srow() noexcept { return srow_.get_data(); }
906 
914  const index_type* get_const_srow() const noexcept
915  {
916  return srow_.get_const_data();
917  }
918 
925  {
926  return srow_.get_size();
927  }
928 
935  {
936  return values_.get_size();
937  }
938 
943  std::shared_ptr<strategy_type> get_strategy() const noexcept
944  {
945  return strategy_;
946  }
947 
953  void set_strategy(std::shared_ptr<strategy_type> strategy)
954  {
955  strategy_ = std::move(strategy->copy());
956  this->make_srow();
957  }
958 
966  {
967  auto exec = this->get_executor();
968  GKO_ASSERT_EQUAL_DIMENSIONS(alpha, dim<2>(1, 1));
969  this->scale_impl(make_temporary_clone(exec, alpha).get());
970  }
971 
979  {
980  auto exec = this->get_executor();
981  GKO_ASSERT_EQUAL_DIMENSIONS(alpha, dim<2>(1, 1));
982  this->inv_scale_impl(make_temporary_clone(exec, alpha).get());
983  }
984 
993  static std::unique_ptr<Csr> create(std::shared_ptr<const Executor> exec,
994  std::shared_ptr<strategy_type> strategy);
995 
1007  static std::unique_ptr<Csr> create(
1008  std::shared_ptr<const Executor> exec, const dim<2>& size = {},
1009  size_type num_nonzeros = {},
1010  std::shared_ptr<strategy_type> strategy = nullptr);
1011 
1031  static std::unique_ptr<Csr> create(
1032  std::shared_ptr<const Executor> exec, const dim<2>& size,
1033  array<value_type> values, array<index_type> col_idxs,
1034  array<index_type> row_ptrs,
1035  std::shared_ptr<strategy_type> strategy = nullptr);
1036 
1041  template <typename InputValueType, typename InputColumnIndexType,
1042  typename InputRowPtrType>
1043  GKO_DEPRECATED(
1044  "explicitly construct the gko::array argument instead of passing "
1045  "initializer lists")
1046  static std::unique_ptr<Csr> create(
1047  std::shared_ptr<const Executor> exec, const dim<2>& size,
1048  std::initializer_list<InputValueType> values,
1049  std::initializer_list<InputColumnIndexType> col_idxs,
1050  std::initializer_list<InputRowPtrType> row_ptrs)
1051  {
1052  return create(exec, size, array<value_type>{exec, std::move(values)},
1053  array<index_type>{exec, std::move(col_idxs)},
1054  array<index_type>{exec, std::move(row_ptrs)});
1055  }
1056 
1072  static std::unique_ptr<const Csr> create_const(
1073  std::shared_ptr<const Executor> exec, const dim<2>& size,
1074  gko::detail::const_array_view<ValueType>&& values,
1075  gko::detail::const_array_view<IndexType>&& col_idxs,
1076  gko::detail::const_array_view<IndexType>&& row_ptrs,
1077  std::shared_ptr<strategy_type> strategy = nullptr);
1078 
1091  std::unique_ptr<Csr<ValueType, IndexType>> create_submatrix(
1092  const index_set<IndexType>& row_index_set,
1093  const index_set<IndexType>& column_index_set) const;
1094 
1106  std::unique_ptr<Csr<ValueType, IndexType>> create_submatrix(
1107  const span& row_span, const span& column_span) const;
1108 
1112  Csr& operator=(const Csr&);
1113 
1119  Csr& operator=(Csr&&);
1120 
1124  Csr(const Csr&);
1125 
1131  Csr(Csr&&);
1132 
1133 protected:
1134  Csr(std::shared_ptr<const Executor> exec, const dim<2>& size = {},
1135  size_type num_nonzeros = {},
1136  std::shared_ptr<strategy_type> strategy = nullptr);
1137 
1138  Csr(std::shared_ptr<const Executor> exec, const dim<2>& size,
1139  array<value_type> values, array<index_type> col_idxs,
1140  array<index_type> row_ptrs,
1141  std::shared_ptr<strategy_type> strategy = nullptr);
1142 
1143  void apply_impl(const LinOp* b, LinOp* x) const override;
1144 
1145  void apply_impl(const LinOp* alpha, const LinOp* b, const LinOp* beta,
1146  LinOp* x) const override;
1147 
1148  // TODO: This provides some more sane settings. Please fix this!
1149  static std::shared_ptr<strategy_type> make_default_strategy(
1150  std::shared_ptr<const Executor> exec)
1151  {
1152  auto cuda_exec = std::dynamic_pointer_cast<const CudaExecutor>(exec);
1153  auto hip_exec = std::dynamic_pointer_cast<const HipExecutor>(exec);
1154  auto dpcpp_exec = std::dynamic_pointer_cast<const DpcppExecutor>(exec);
1155  std::shared_ptr<strategy_type> new_strategy;
1156  if (cuda_exec) {
1157  new_strategy = std::make_shared<automatical>(cuda_exec);
1158  } else if (hip_exec) {
1159  new_strategy = std::make_shared<automatical>(hip_exec);
1160  } else if (dpcpp_exec) {
1161  new_strategy = std::make_shared<automatical>(dpcpp_exec);
1162  } else {
1163  new_strategy = std::make_shared<classical>();
1164  }
1165  return new_strategy;
1166  }
1167 
1168  // TODO clean this up as soon as we improve strategy_type
1169  template <typename CsrType>
1170  void convert_strategy_helper(CsrType* result) const
1171  {
1172  auto strat = this->get_strategy().get();
1173  std::shared_ptr<typename CsrType::strategy_type> new_strat;
1174  if (dynamic_cast<classical*>(strat)) {
1175  new_strat = std::make_shared<typename CsrType::classical>();
1176  } else if (dynamic_cast<merge_path*>(strat)) {
1177  new_strat = std::make_shared<typename CsrType::merge_path>();
1178  } else if (dynamic_cast<cusparse*>(strat)) {
1179  new_strat = std::make_shared<typename CsrType::cusparse>();
1180  } else if (dynamic_cast<sparselib*>(strat)) {
1181  new_strat = std::make_shared<typename CsrType::sparselib>();
1182  } else {
1183  auto rexec = result->get_executor();
1184  auto cuda_exec =
1185  std::dynamic_pointer_cast<const CudaExecutor>(rexec);
1186  auto hip_exec = std::dynamic_pointer_cast<const HipExecutor>(rexec);
1187  auto dpcpp_exec =
1188  std::dynamic_pointer_cast<const DpcppExecutor>(rexec);
1189  auto lb = dynamic_cast<load_balance*>(strat);
1190  if (cuda_exec) {
1191  if (lb) {
1192  new_strat =
1193  std::make_shared<typename CsrType::load_balance>(
1194  cuda_exec);
1195  } else {
1196  new_strat = std::make_shared<typename CsrType::automatical>(
1197  cuda_exec);
1198  }
1199  } else if (hip_exec) {
1200  if (lb) {
1201  new_strat =
1202  std::make_shared<typename CsrType::load_balance>(
1203  hip_exec);
1204  } else {
1205  new_strat = std::make_shared<typename CsrType::automatical>(
1206  hip_exec);
1207  }
1208  } else if (dpcpp_exec) {
1209  if (lb) {
1210  new_strat =
1211  std::make_shared<typename CsrType::load_balance>(
1212  dpcpp_exec);
1213  } else {
1214  new_strat = std::make_shared<typename CsrType::automatical>(
1215  dpcpp_exec);
1216  }
1217  } else {
1218  // Try to preserve this executor's configuration
1219  auto this_cuda_exec =
1220  std::dynamic_pointer_cast<const CudaExecutor>(
1221  this->get_executor());
1222  auto this_hip_exec =
1223  std::dynamic_pointer_cast<const HipExecutor>(
1224  this->get_executor());
1225  auto this_dpcpp_exec =
1226  std::dynamic_pointer_cast<const DpcppExecutor>(
1227  this->get_executor());
1228  if (this_cuda_exec) {
1229  if (lb) {
1230  new_strat =
1231  std::make_shared<typename CsrType::load_balance>(
1232  this_cuda_exec);
1233  } else {
1234  new_strat =
1235  std::make_shared<typename CsrType::automatical>(
1236  this_cuda_exec);
1237  }
1238  } else if (this_hip_exec) {
1239  if (lb) {
1240  new_strat =
1241  std::make_shared<typename CsrType::load_balance>(
1242  this_hip_exec);
1243  } else {
1244  new_strat =
1245  std::make_shared<typename CsrType::automatical>(
1246  this_hip_exec);
1247  }
1248  } else if (this_dpcpp_exec) {
1249  if (lb) {
1250  new_strat =
1251  std::make_shared<typename CsrType::load_balance>(
1252  this_dpcpp_exec);
1253  } else {
1254  new_strat =
1255  std::make_shared<typename CsrType::automatical>(
1256  this_dpcpp_exec);
1257  }
1258  } else {
1259  // FIXME: this changes strategies.
1260  // We had a load balance or automatical strategy from a non
1261  // HIP or Cuda executor and are moving to a non HIP or Cuda
1262  // executor.
1263  new_strat = std::make_shared<typename CsrType::classical>();
1264  }
1265  }
1266  }
1267  result->set_strategy(new_strat);
1268  }
1269 
1273  void make_srow()
1274  {
1275  srow_.resize_and_reset(strategy_->clac_size(values_.get_size()));
1276  strategy_->process(row_ptrs_, &srow_);
1277  }
1278 
1285  virtual void scale_impl(const LinOp* alpha);
1286 
1293  virtual void inv_scale_impl(const LinOp* alpha);
1294 
1295 private:
1296  std::shared_ptr<strategy_type> strategy_;
1297  array<value_type> values_;
1298  array<index_type> col_idxs_;
1299  array<index_type> row_ptrs_;
1300  array<index_type> srow_;
1301 
1302  void add_scaled_identity_impl(const LinOp* a, const LinOp* b) override;
1303 };
1304 
1305 
1306 namespace detail {
1307 
1308 
1315 template <typename ValueType, typename IndexType>
1316 void strategy_rebuild_helper(Csr<ValueType, IndexType>* result)
1317 {
1318  using load_balance = typename Csr<ValueType, IndexType>::load_balance;
1319  using automatical = typename Csr<ValueType, IndexType>::automatical;
1320  auto strategy = result->get_strategy();
1321  auto executor = result->get_executor();
1322  if (std::dynamic_pointer_cast<load_balance>(strategy)) {
1323  if (auto exec =
1324  std::dynamic_pointer_cast<const HipExecutor>(executor)) {
1325  result->set_strategy(std::make_shared<load_balance>(exec));
1326  } else if (auto exec = std::dynamic_pointer_cast<const CudaExecutor>(
1327  executor)) {
1328  result->set_strategy(std::make_shared<load_balance>(exec));
1329  }
1330  } else if (std::dynamic_pointer_cast<automatical>(strategy)) {
1331  if (auto exec =
1332  std::dynamic_pointer_cast<const HipExecutor>(executor)) {
1333  result->set_strategy(std::make_shared<automatical>(exec));
1334  } else if (auto exec = std::dynamic_pointer_cast<const CudaExecutor>(
1335  executor)) {
1336  result->set_strategy(std::make_shared<automatical>(exec));
1337  }
1338  }
1339 }
1340 
1341 
1342 } // namespace detail
1343 } // namespace matrix
1344 } // namespace gko
1345 
1346 
1347 #endif // GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
gko::matrix::Csr::automatical
Definition: csr.hpp:512
gko::matrix::Csr::get_const_srow
const index_type * get_const_srow() const noexcept
Returns the starting rows.
Definition: csr.hpp:914
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const HipExecutor > exec)
Creates a load_balance strategy with HIP executor.
Definition: csr.hpp:371
gko::matrix::Csr::operator=
Csr & operator=(const Csr &)
Copy-assigns a Csr matrix.
gko::matrix::Csr::cusparse::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:305
gko::matrix::Csr::get_col_idxs
index_type * get_col_idxs() noexcept
Returns the column indexes of the matrix.
Definition: csr.hpp:867
gko::matrix::Fbcsr
Fixed-block compressed sparse row storage matrix format.
Definition: csr.hpp:46
gko::matrix::Csr
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:27
gko::matrix::Csr::get_const_row_ptrs
const index_type * get_const_row_ptrs() const noexcept
Returns the row pointers of the matrix.
Definition: csr.hpp:895
gko::matrix::Csr::sparselib::sparselib
sparselib()
Creates a sparselib strategy.
Definition: csr.hpp:327
gko::LinOp
Definition: lin_op.hpp:118
gko::matrix::Dense
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:20
gko::matrix::CsrBuilder
Definition: csr.hpp:49
gko::matrix::Csr::inverse_row_permute
std::unique_ptr< LinOp > inverse_row_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
gko::matrix::Csr::sparselib
sparselib is a strategy_type which uses the sparselib csr.
Definition: csr.hpp:322
gko::DiagonalExtractable
The diagonal of a LinOp implementing this interface can be extracted.
Definition: lin_op.hpp:744
gko::matrix::SparsityCsr
SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressi...
Definition: csr.hpp:40
gko::matrix::Csr::load_balance
load_balance is a strategy_type which uses the load balance algorithm.
Definition: csr.hpp:344
gko::matrix::Csr::scale
void scale(ptr_param< const LinOp > alpha)
Scales the matrix with a scalar.
Definition: csr.hpp:965
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const HipExecutor > exec)
Creates an automatical strategy with HIP executor.
Definition: csr.hpp:559
gko::Transposable
Linear operators which support transposition should implement the Transposable interface.
Definition: lin_op.hpp:434
gko::matrix::Csr::column_permute
std::unique_ptr< LinOp > column_permute(const array< IndexType > *permutation_indices) const override
Returns a LinOp representing the column permutation of the Permutable object.
gko::matrix::Csr::strategy_type::get_name
std::string get_name()
Returns the name of strategy.
Definition: csr.hpp:184
gko::matrix::Csr::classical::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:252
gko::matrix::ScaledPermutation
ScaledPermutation is a matrix combining a permutation with scaling factors.
Definition: scaled_permutation.hpp:37
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:108
gko::matrix::Csr::strategy_type::copy
virtual std::shared_ptr< strategy_type > copy()=0
Copy a strategy.
gko::matrix::Csr::get_srow
index_type * get_srow() noexcept
Returns the starting rows.
Definition: csr.hpp:905
gko::matrix::Csr::sparselib::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:333
gko::matrix::Permutation
Permutation is a matrix format that represents a permutation matrix, i.e.
Definition: permutation.hpp:112
gko::matrix::Csr::automatical::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:596
gko::matrix::Csr::row_permute
std::unique_ptr< LinOp > row_permute(const array< IndexType > *permutation_indices) const override
Returns a LinOp representing the row permutation of the Permutable object.
gko::matrix::Csr::classical::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:259
gko::CudaExecutor
This is the Executor subclass which represents the CUDA device.
Definition: executor.hpp:1483
gko::matrix::Csr::strategy_type::process
virtual void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow)=0
Computes srow according to row pointers.
gko::Permutable
Linear operators which support permutation should implement the Permutable interface.
Definition: lin_op.hpp:485
gko::matrix::Csr::transpose
std::unique_ptr< LinOp > transpose() const override
Returns a LinOp representing the transpose of the Transposable object.
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const DpcppExecutor > exec)
Creates a load_balance strategy with DPCPP executor.
Definition: csr.hpp:382
gko
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
gko::matrix::Csr::load_balance::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:407
gko::matrix::Csr::inv_scale
void inv_scale(ptr_param< const LinOp > alpha)
Scales the matrix with the inverse of a scalar.
Definition: csr.hpp:978
gko::matrix::Csr::extract_diagonal
std::unique_ptr< Diagonal< ValueType > > extract_diagonal() const override
Extracts the diagonal entries of the matrix into a vector.
gko::array< index_type >
gko::matrix::Csr::cusparse
cusparse is a strategy_type which uses the sparselib csr.
Definition: csr.hpp:298
gko::matrix::Csr::inverse_permute
std::unique_ptr< LinOp > inverse_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the symmetric inverse row and column permutation of the Permutable objec...
gko::matrix::Csr::get_row_ptrs
index_type * get_row_ptrs() noexcept
Returns the row pointers of the matrix.
Definition: csr.hpp:886
gko::array::resize_and_reset
void resize_and_reset(size_type size)
Resizes the array so it is able to hold the specified number of elements.
Definition: array.hpp:623
gko::span
A span is a lightweight structure used to create sub-ranges from other ranges.
Definition: range.hpp:47
gko::dim< 2 >
gko::matrix_data
This structure is used as an intermediate data type to store a sparse matrix.
Definition: matrix_data.hpp:127
gko::matrix::Csr::load_balance::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:460
gko::matrix::Csr::merge_path
merge_path is a strategy_type which uses the merge_path algorithm.
Definition: csr.hpp:273
gko::matrix::Csr::permute
std::unique_ptr< Csr > permute(ptr_param< const Permutation< index_type >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a permuted copy of this matrix with the given permutation .
gko::index_set
An index set class represents an ordered set of intervals.
Definition: index_set.hpp:57
gko::matrix::Csr::automatical::automatical
automatical()
Creates an automatical strategy.
Definition: csr.hpp:540
gko::matrix::Csr::merge_path::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:286
gko::matrix::Csr::load_balance::load_balance
load_balance(int64_t nwarps, int warp_size=32, bool cuda_strategy=true, std::string strategy_name="none")
Creates a load_balance strategy with specified parameters.
Definition: csr.hpp:397
gko::matrix::Diagonal
This class is a utility which efficiently implements the diagonal matrix (a linear operator which sca...
Definition: lin_op.hpp:32
gko::matrix::Csr::strategy_type::clac_size
virtual int64_t clac_size(const int64_t nnz)=0
Computes the srow size according to the number of nonzeros.
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const CudaExecutor > exec)
Creates a load_balance strategy with CUDA executor.
Definition: csr.hpp:362
gko::next_precision
typename detail::next_precision_impl< T >::type next_precision
Obtains the next type in the singly-linked precision list.
Definition: math.hpp:462
gko::ptr_param
This class is used for function parameters in the place of raw pointers.
Definition: utils_helper.hpp:43
gko::array::get_data
value_type * get_data() noexcept
Returns a pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:674
gko::ReadableFromMatrixData
A LinOp implementing this interface can read its data from a matrix_data structure.
Definition: lin_op.hpp:606
gko::OmpExecutor
This is the Executor subclass which represents the OpenMP device (typically CPU).
Definition: executor.hpp:1337
gko::matrix::Csr::conj_transpose
std::unique_ptr< LinOp > conj_transpose() const override
Returns a LinOp representing the conjugate transpose of the Transposable object.
gko::WritableToMatrixData
A LinOp implementing this interface can write its data to a matrix_data structure.
Definition: lin_op.hpp:661
gko::matrix::permute_mode::symmetric
The rows and columns will be permuted.
gko::matrix::Csr::sparselib::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:329
gko::matrix::Csr::cusparse::cusparse
cusparse()
Creates a cusparse strategy.
Definition: csr.hpp:303
gko::matrix::Csr::cusparse::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:309
gko::matrix::Csr::merge_path::merge_path
merge_path()
Creates a merge_path strategy.
Definition: csr.hpp:278
gko::matrix::Csr::get_const_values
const value_type * get_const_values() const noexcept
Returns the values of the matrix.
Definition: csr.hpp:857
gko::stop::mode
mode
The mode for the residual norm criterion.
Definition: residual_norm.hpp:37
gko::matrix::Csr::load_balance::load_balance
load_balance()
Creates a load_balance strategy.
Definition: csr.hpp:352
gko::array::get_executor
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor associated with the array.
Definition: array.hpp:690
gko::matrix::Csr::get_num_stored_elements
size_type get_num_stored_elements() const noexcept
Returns the number of elements explicitly stored in the matrix.
Definition: csr.hpp:934
gko::matrix::Csr::create_submatrix
std::unique_ptr< Csr< ValueType, IndexType > > create_submatrix(const index_set< IndexType > &row_index_set, const index_set< IndexType > &column_index_set) const
Creates a submatrix from this Csr matrix given row and column index_set objects.
gko::ScaledIdentityAddable
Adds the operation M <- a I + b M for matrix M, identity operator I and scalars a and b,...
Definition: lin_op.hpp:819
gko::matrix::Csr::load_balance::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:499
gko::matrix::Csr::classical::classical
classical()
Creates a classical strategy.
Definition: csr.hpp:228
gko::matrix::Csr::strategy_type::strategy_type
strategy_type(std::string name)
Creates a strategy_type.
Definition: csr.hpp:175
gko::matrix::Csr::sort_by_column_index
void sort_by_column_index()
Sorts all (value, col_idx) pairs in each row by column index.
gko::matrix::Csr::merge_path::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:280
gko::matrix::Csr::create_const
static std::unique_ptr< const Csr > create_const(std::shared_ptr< const Executor > exec, const dim< 2 > &size, gko::detail::const_array_view< ValueType > &&values, gko::detail::const_array_view< IndexType > &&col_idxs, gko::detail::const_array_view< IndexType > &&row_ptrs, std::shared_ptr< strategy_type > strategy=nullptr)
Creates a constant (immutable) Csr matrix from a set of constant arrays.
gko::matrix::Csr::automatical::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:677
gko::matrix::Csr::classical
classical is a strategy_type which uses the same number of threads on each row.
Definition: csr.hpp:223
gko::matrix::Csr::get_strategy
std::shared_ptr< strategy_type > get_strategy() const noexcept
Returns the strategy.
Definition: csr.hpp:943
gko::matrix::Csr::set_strategy
void set_strategy(std::shared_ptr< strategy_type > strategy)
Set the strategy.
Definition: csr.hpp:953
gko::matrix::Ell
ELL is a matrix format where stride with explicit zeros is used such that all rows have the same numb...
Definition: csr.hpp:31
gko::ConvertibleTo
ConvertibleTo interface is used to mark that the implementer can be converted to the object of Result...
Definition: polymorphic_object.hpp:471
gko::matrix::Csr::compute_absolute
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
gko::matrix::Csr::strategy_type
strategy_type is to decide how to set the csr algorithm.
Definition: csr.hpp:166
gko::make_temporary_clone
detail::temporary_clone< detail::pointee< Ptr > > make_temporary_clone(std::shared_ptr< const Executor > exec, Ptr &&ptr)
Creates a temporary_clone.
Definition: temporary_clone.hpp:209
gko::Executor
The first step in using the Ginkgo library consists of creating an executor.
Definition: executor.hpp:616
gko::matrix::Hybrid
HYBRID is a matrix format which splits the matrix into ELLPACK and COO format.
Definition: coo.hpp:32
gko::array::get_const_data
const value_type * get_const_data() const noexcept
Returns a constant pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:683
gko::matrix::Csr::write
void write(mat_data &data) const override
Writes a matrix to a matrix_data structure.
gko::matrix::permute_mode
permute_mode
Specifies how a permutation will be applied to a matrix.
Definition: permutation.hpp:43
gko::matrix::Sellp
SELL-P is a matrix format similar to ELL format.
Definition: csr.hpp:37
gko::min
constexpr T min(const T &x, const T &y)
Returns the smaller of the arguments.
Definition: math.hpp:863
gko::matrix::Csr::cusparse::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:311
gko::matrix::Csr::get_const_col_idxs
const index_type * get_const_col_idxs() const noexcept
Returns the column indexes of the matrix.
Definition: csr.hpp:876
gko::ceildiv
constexpr int64 ceildiv(int64 num, int64 den)
Performs integer division with rounding up.
Definition: math.hpp:613
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const DpcppExecutor > exec)
Creates an automatical strategy with Dpcpp executor.
Definition: csr.hpp:570
gko::matrix::Csr::merge_path::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:284
gko::EnableAbsoluteComputation
The EnableAbsoluteComputation mixin provides the default implementations of compute_absolute_linop an...
Definition: lin_op.hpp:795
gko::matrix::Csr::inverse_column_permute
std::unique_ptr< LinOp > inverse_column_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
gko::matrix::Csr::Csr
Csr(const Csr &)
Copy-constructs a Csr matrix.
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const CudaExecutor > exec)
Creates an automatical strategy with CUDA executor.
Definition: csr.hpp:550
gko::PolymorphicObject::get_executor
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor of the object.
Definition: polymorphic_object.hpp:235
gko::array::get_size
size_type get_size() const noexcept
Returns the number of elements in the array.
Definition: array.hpp:657
gko::matrix::Csr::automatical::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:665
gko::matrix::Csr::automatical::automatical
automatical(int64_t nwarps, int warp_size=32, bool cuda_strategy=true, std::string strategy_name="none")
Creates an automatical strategy with specified parameters.
Definition: csr.hpp:585
gko::matrix::Csr::classical::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:230
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:326
gko::matrix::Csr::compute_absolute_inplace
void compute_absolute_inplace() override
Compute absolute inplace on each element.
gko::matrix::Csr::scale_permute
std::unique_ptr< Csr > scale_permute(ptr_param< const ScaledPermutation< value_type, index_type >> permutation, permute_mode=permute_mode::symmetric) const
Creates a scaled and permuted copy of this matrix.
gko::device_matrix_data
This type is a device-side equivalent to matrix_data.
Definition: device_matrix_data.hpp:36
gko::matrix::Csr::read
void read(const mat_data &data) override
Reads a matrix from a matrix_data structure.
gko::matrix::Csr::create
static std::unique_ptr< Csr > create(std::shared_ptr< const Executor > exec, std::shared_ptr< strategy_type > strategy)
Creates an uninitialized CSR matrix of the specified size.
gko::EnableLinOp
The EnableLinOp mixin can be used to provide sensible default implementations of the majority of the ...
Definition: lin_op.hpp:878
gko::matrix::Csr::sparselib::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:335
gko::matrix::Csr::get_values
value_type * get_values() noexcept
Returns the values of the matrix.
Definition: csr.hpp:848
gko::matrix::Csr::get_num_srow_elements
size_type get_num_srow_elements() const noexcept
Returns the number of the srow stored elements (involved warps)
Definition: csr.hpp:924
gko::LinOp::LinOp
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
gko::to_complex
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:345
gko::EnablePolymorphicObject
This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a ne...
Definition: polymorphic_object.hpp:662
gko::matrix::Coo
COO stores a matrix in the coordinate matrix format.
Definition: coo.hpp:50