Ginkgo  Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
The minimal-cuda-solver program

The minimal CUDA solver example..

This example depends on simple-solver.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

Introduction

This is a minimal example that solves a system with Ginkgo. The matrix, right hand side and initial guess are read from standard input, and the result is written to standard output. The system matrix is stored in CSR format, and the system solved using the CG method, preconditioned with the block-Jacobi preconditioner. All computations are done on the GPU.

The easiest way to use the example data from the data/ folder is to concatenate the matrix, the right hand side and the initial solution (in that exact order), and pipe the result to the minimal_solver_cuda executable:

cat data/A.mtx data/b.mtx data/x0.mtx | ./minimal-cuda-solver

About the example

The commented program

Results

The following is the expected result when using the data contained in the folder data as input:

%%MatrixMarket matrix array real general
19 1
0.252218
0.108645
0.0662811
0.0630433
0.0384088
0.0396536
0.0402648
0.0338935
0.0193098
0.0234653
0.0211499
0.0196413
0.0199151
0.0181674
0.0162722
0.0150714
0.0107016
0.0121141
0.0123025

Comments about programming and debugging

The plain program

#include <ginkgo/ginkgo.hpp>
#include <iostream>
int main()
{
auto A = gko::read<gko::matrix::Csr<>>(std::cin, gpu);
auto b = gko::read<gko::matrix::Dense<>>(std::cin, gpu);
auto x = gko::read<gko::matrix::Dense<>>(std::cin, gpu);
auto solver =
.with_preconditioner(gko::preconditioner::Jacobi<>::build())
.with_criteria(
gko::stop::Iteration::build().with_max_iters(20u),
gko::stop::ResidualNorm<>::build().with_reduction_factor(1e-15))
.on(gpu);
solver->generate(give(A))->apply(b, x);
write(std::cout, x);
}
gko::log::profile_event_category::solver
Solver events.
gko::layout_type::array
The matrix should be written as dense matrix in column-major order.
gko::give
std::remove_reference< OwningPointer >::type && give(OwningPointer &&p)
Marks that the object pointed to by p can be given to the callee.
Definition: utils_helper.hpp:249
gko::preconditioner::Jacobi
A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal...
Definition: jacobi.hpp:187
gko::stop::ResidualNorm
The ResidualNorm class is a stopping criterion which stops the iteration process when the actual resi...
Definition: residual_norm.hpp:110
gko::solver::Cg
CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for...
Definition: cg.hpp:49
gko::write
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType >>>::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition: mtx_io.hpp:296
gko::CudaExecutor::create
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
gko::OmpExecutor::create
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition: executor.hpp:1345
gko::real
constexpr auto real(const T &x)
Returns the real part of the object.
Definition: math.hpp:1013