Ginkgo  Generated from pipelines/1330831941 branch based on master. Ginkgo version 1.8.0
A numerical linear algebra library targeting many-core architectures
The mixed-multigrid-solver program

The mixed multigrid solver example..

This example depends on simple-solver.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

This example shows how to use the mixed-precision multigrid solver.

In this example, we first read in a matrix from a file, then generate a right-hand side and an initial guess. The multigrid solver can mix different precision of MultigridLevel. The example features the generating time and runtime of the multigrid solver.

The commented program

Print version information

std::cout << gko::version_info::get() << std::endl;
const auto executor_string = argc >= 2 ? argv[1] : "reference";

Figure out where to run the code

std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};

executor where Ginkgo will perform the computation

const auto exec = exec_map.at(executor_string)(); // throws if not valid
const int mixed_int = argc >= 3 ? std::atoi(argv[2]) : 1;
const bool use_mixed = mixed_int != 0; // nonzero uses mixed
std::cout << "Using mixed precision? " << use_mixed << std::endl;

Read data

auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));

Create RHS as 1 and initial guess as 0

gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);

Calculate initial residual by overwriting b

auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);

copy b again

b->copy_from(host_b);

Prepare the stopping criteria

const gko::remove_complex<ValueType> tolerance = 1e-12;
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));

Create smoother factory (ir with bj)

auto smoother_gen = gko::share(
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
auto smoother_gen2 = gko::share(
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));

Create RestrictProlong factory

auto mg_level_gen =
gko::share(pgm::build().with_deterministic(true).on(exec));
auto mg_level_gen2 =
gko::share(pgm2::build().with_deterministic(true).on(exec));

Create CoarsesSolver factory

auto coarsest_solver_gen = gko::share(
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
auto coarsest_solver_gen2 = gko::share(
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));

Create multigrid factory

std::shared_ptr<gko::LinOpFactory> multigrid_gen;
if (use_mixed) {
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen, smoother_gen2)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen, mg_level_gen2)
.with_level_selector([](const gko::size_type level,

The first (index 0) level will use the first mg_level_gen, smoother_gen which are the factories with ValueType. The rest of levels (>= 1) will use the second (index 1) mg_level_gen2 and smoother_gen2 which use the MixedType. The rest of levels will use different type than the normal multigrid.

return level >= 1 ? 1 : 0;
})
.with_coarsest_solver(coarsest_solver_gen2)
.with_criteria(iter_stop, tol_stop)
.on(exec);
} else {
multigrid_gen = mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_solver_gen)
.with_criteria(iter_stop, tol_stop)
.on(exec);
}
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();

auto solver = solver_gen->generate(A);

auto solver = multigrid_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);

Add logger

std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver->add_logger(logger);

Solve system

exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);

Calculate residual explicitly, because the residual is not available inside of the multigrid solver

auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);

Print solver statistics

std::cout << "Multigrid iteration count: "
<< logger->get_num_iterations() << std::endl;
std::cout << "Multigrid generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}

Results

This is the expected output:

Initial residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
4.3589
Final residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
6.31088e-14
Multigrid iteration count: 9
Multigrid generation time [ms]: 3.35361
Multigrid execution time [ms]: 10.048
Multigrid execution time per iteration[ms]: 1.11644

Comments about programming and debugging

The plain program

#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using MixedType = float;
using IndexType = int;
std::cout << gko::version_info::get() << std::endl;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)(); // throws if not valid
const int mixed_int = argc >= 3 ? std::atoi(argv[2]) : 1;
const bool use_mixed = mixed_int != 0; // nonzero uses mixed
std::cout << "Using mixed precision? " << use_mixed << std::endl;
auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_b);
const gko::remove_complex<ValueType> tolerance = 1e-12;
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
auto smoother_gen = gko::share(
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
auto smoother_gen2 = gko::share(
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(true).on(exec));
auto mg_level_gen2 =
gko::share(pgm2::build().with_deterministic(true).on(exec));
auto coarsest_solver_gen = gko::share(
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
auto coarsest_solver_gen2 = gko::share(
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
if (use_mixed) {
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen, smoother_gen2)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen, mg_level_gen2)
.with_level_selector([](const gko::size_type level,
return level >= 1 ? 1 : 0;
})
.with_coarsest_solver(coarsest_solver_gen2)
.with_criteria(iter_stop, tol_stop)
.on(exec);
} else {
multigrid_gen = mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_solver_gen)
.with_criteria(iter_stop, tol_stop)
.on(exec);
}
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = multigrid_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver->add_logger(logger);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);
std::cout << "Multigrid iteration count: "
<< logger->get_num_iterations() << std::endl;
std::cout << "Multigrid generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}
gko::matrix::Csr
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:27
gko::log::profile_event_category::solver
Solver events.
gko::log::Convergence::create
static std::unique_ptr< Convergence > create(std::shared_ptr< const Executor >, const mask_type &enabled_events=Logger::criterion_events_mask|Logger::iteration_complete_mask)
Creates a convergence logger.
Definition: convergence.hpp:74
gko::layout_type::array
The matrix should be written as dense matrix in column-major order.
gko::LinOp
Definition: lin_op.hpp:118
gko::matrix::Dense
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:20
gko::solver::Ir
Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the e...
Definition: ir.hpp:82
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:108
gko::solver::Multigrid
Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level,...
Definition: multigrid.hpp:108
gko::solver::Fcg
FCG or the flexible conjugate gradient method is an iterative type Krylov subspace method which is su...
Definition: fcg.hpp:53
gko::HipExecutor::create
static std::shared_ptr< HipExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_hip_alloc_mode, CUstream_st *stream=nullptr)
Creates a new HipExecutor.
gko::version_info::get
static const version_info & get()
Returns an instance of version_info.
Definition: version.hpp:140
gko::preconditioner::Jacobi
A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal...
Definition: jacobi.hpp:187
gko::stop::ResidualNorm
The ResidualNorm class is a stopping criterion which stops the iteration process when the actual resi...
Definition: residual_norm.hpp:110
gko::multigrid::Pgm
Parallel graph match (Pgm) is the aggregate method introduced in the paper M.
Definition: matrix.hpp:37
gko::dim< 2 >
gko::solver::Cg
CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for...
Definition: cg.hpp:49
gko::write
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType >>>::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition: mtx_io.hpp:296
gko::share
detail::shared_type< OwningPointer > share(OwningPointer &&p)
Marks the object pointed to by p as shared.
Definition: utils_helper.hpp:226
gko::CudaExecutor::create
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
gko::OmpExecutor::create
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition: executor.hpp:1345
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:326
gko::DpcppExecutor::create
static std::shared_ptr< DpcppExecutor > create(int device_id, std::shared_ptr< Executor > master, std::string device_type="all", dpcpp_queue_property property=dpcpp_queue_property::in_order)
Creates a new DpcppExecutor.
gko::real
constexpr auto real(const T &x)
Returns the real part of the object.
Definition: math.hpp:1013
gko::one
constexpr T one()
Returns the multiplicative identity for T.
Definition: math.hpp:775