The mixed multigrid solver example..
This example depends on simple-solver.
This example shows how to use the mixed-precision multigrid solver.
In this example, we first read in a matrix from a file, then generate a right-hand side and an initial guess. The multigrid solver can mix different precision of MultigridLevel. The example features the generating time and runtime of the multigrid solver.
The commented program
Print version information
const auto executor_string = argc >= 2 ? argv[1] : "reference";
Figure out where to run the code
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
const int mixed_int = argc >= 3 ? std::atoi(argv[2]) : 1;
const bool use_mixed = mixed_int != 0;
std::cout << "Using mixed precision? " << use_mixed << std::endl;
Read data
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
Create RHS as 1 and initial guess as 0
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
Calculate initial residual by overwriting b
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
copy b again
Prepare the stopping criteria
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
Create smoother factory (ir with bj)
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
Create RestrictProlong factory
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(
true).on(exec));
auto mg_level_gen2 =
gko::share(pgm2::build().with_deterministic(
true).on(exec));
Create CoarsesSolver factory
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
Create multigrid factory
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
if (use_mixed) {
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen, smoother_gen2)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen, mg_level_gen2)
The first (index 0) level will use the first mg_level_gen, smoother_gen which are the factories with ValueType. The rest of levels (>= 1) will use the second (index 1) mg_level_gen2 and smoother_gen2 which use the MixedType. The rest of levels will use different type than the normal multigrid.
return level >= 1 ? 1 : 0;
})
.with_coarsest_solver(coarsest_solver_gen2)
.with_criteria(iter_stop, tol_stop)
.on(exec);
} else {
multigrid_gen = mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_solver_gen)
.with_criteria(iter_stop, tol_stop)
.on(exec);
}
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
auto solver = multigrid_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
Add logger
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
Solve system
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
Calculate residual explicitly, because the residual is not available inside of the multigrid solver
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
Print solver statistics
std::cout << "Multigrid iteration count: "
<< logger->get_num_iterations() << std::endl;
std::cout << "Multigrid generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}
Results
This is the expected output:
Initial residual norm sqrt(r^T r):
1 1
4.3589
Final residual norm sqrt(r^T r):
1 1
6.31088e-14
Multigrid iteration count: 9
Multigrid generation time [ms]: 3.35361
Multigrid execution time [ms]: 10.048
Multigrid execution time per iteration[ms]: 1.11644
Comments about programming and debugging
The plain program
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using MixedType = float;
using IndexType = int;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
const int mixed_int = argc >= 3 ? std::atoi(argv[2]) : 1;
const bool use_mixed = mixed_int != 0;
std::cout << "Using mixed precision? " << use_mixed << std::endl;
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_b);
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec));
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(
true).on(exec));
auto mg_level_gen2 =
gko::share(pgm2::build().with_deterministic(
true).on(exec));
ir::build()
.with_solver(bj::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<ValueType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
ir2::build()
.with_solver(bj2::build().with_max_block_size(1u))
.with_relaxation_factor(static_cast<MixedType>(0.9))
.with_criteria(gko::stop::Iteration::build().with_max_iters(4u))
.on(exec));
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
if (use_mixed) {
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen, smoother_gen2)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen, mg_level_gen2)
return level >= 1 ? 1 : 0;
})
.with_coarsest_solver(coarsest_solver_gen2)
.with_criteria(iter_stop, tol_stop)
.on(exec);
} else {
multigrid_gen = mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(2u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_solver_gen)
.with_criteria(iter_stop, tol_stop)
.on(exec);
}
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = multigrid_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
std::cout << "Multigrid iteration count: "
<< logger->get_num_iterations() << std::endl;
std::cout << "Multigrid generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "Multigrid execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}