|
Ginkgo
Generated from pipelines/1589998975 branch based on develop. Ginkgo version 1.10.0
A numerical linear algebra library targeting many-core architectures
|
5 #ifndef GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
6 #define GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
9 #include <initializer_list>
10 #include <type_traits>
12 #include <ginkgo/core/base/array.hpp>
13 #include <ginkgo/core/base/exception_helpers.hpp>
14 #include <ginkgo/core/base/executor.hpp>
15 #include <ginkgo/core/base/lin_op.hpp>
16 #include <ginkgo/core/base/range_accessors.hpp>
17 #include <ginkgo/core/base/types.hpp>
18 #include <ginkgo/core/base/utils.hpp>
19 #include <ginkgo/core/matrix/permutation.hpp>
20 #include <ginkgo/core/matrix/scaled_permutation.hpp>
24 namespace experimental {
25 namespace distributed {
28 template <
typename ValueType>
35 template <
typename ValueType>
47 template <
typename ValueType,
typename IndexType>
50 template <
typename ValueType,
typename IndexType>
53 template <
typename ValueType>
56 template <
typename ValueType,
typename IndexType>
59 template <
typename ValueType,
typename IndexType>
62 template <
typename ValueType,
typename IndexType>
65 template <
typename ValueType,
typename IndexType>
68 template <
typename ValueType,
typename IndexType>
87 template <
typename ValueType = default_precision>
89 :
public EnableLinOp<Dense<ValueType>>,
90 public ConvertibleTo<Dense<next_precision<ValueType>>>,
91 #if GINKGO_ENABLE_HALF
92 public ConvertibleTo<Dense<next_precision<next_precision<ValueType>>>>,
94 public ConvertibleTo<Coo<ValueType, int32>>,
95 public ConvertibleTo<Coo<ValueType, int64>>,
96 public ConvertibleTo<Csr<ValueType, int32>>,
97 public ConvertibleTo<Csr<ValueType, int64>>,
98 public ConvertibleTo<Ell<ValueType, int32>>,
99 public ConvertibleTo<Ell<ValueType, int64>>,
100 public ConvertibleTo<Fbcsr<ValueType, int32>>,
101 public ConvertibleTo<Fbcsr<ValueType, int64>>,
102 public ConvertibleTo<Hybrid<ValueType, int32>>,
103 public ConvertibleTo<Hybrid<ValueType, int64>>,
104 public ConvertibleTo<Sellp<ValueType, int32>>,
105 public ConvertibleTo<Sellp<ValueType, int64>>,
106 public ConvertibleTo<SparsityCsr<ValueType, int32>>,
107 public ConvertibleTo<SparsityCsr<ValueType, int64>>,
108 public DiagonalExtractable<ValueType>,
109 public ReadableFromMatrixData<ValueType, int32>,
110 public ReadableFromMatrixData<ValueType, int64>,
111 public WritableToMatrixData<ValueType, int32>,
112 public WritableToMatrixData<ValueType, int64>,
114 public Permutable<int32>,
115 public Permutable<int64>,
116 public EnableAbsoluteComputation<remove_complex<Dense<ValueType>>>,
117 public ScaledIdentityAddable {
118 friend class EnablePolymorphicObject<
Dense,
LinOp>;
119 friend class Coo<ValueType,
int32>;
120 friend class Coo<ValueType,
int64>;
121 friend class Csr<ValueType,
int32>;
122 friend class Csr<ValueType,
int64>;
123 friend class Diagonal<ValueType>;
124 friend class Ell<ValueType,
int32>;
125 friend class Ell<ValueType,
int64>;
126 friend class Fbcsr<ValueType,
int32>;
127 friend class Fbcsr<ValueType,
int64>;
128 friend class Hybrid<ValueType,
int32>;
129 friend class Hybrid<ValueType,
int64>;
130 friend class Sellp<ValueType,
int32>;
131 friend class Sellp<ValueType,
int64>;
132 friend class SparsityCsr<ValueType,
int32>;
133 friend class SparsityCsr<ValueType,
int64>;
135 friend class experimental::distributed::Vector<ValueType>;
136 friend class experimental::distributed::detail::VectorCache<ValueType>;
141 using ConvertibleTo<Dense<next_precision<ValueType>>>::convert_to;
142 using ConvertibleTo<Dense<next_precision<ValueType>>>::move_to;
143 using ConvertibleTo<Coo<ValueType, int32>>::convert_to;
144 using ConvertibleTo<Coo<ValueType, int32>>::move_to;
145 using ConvertibleTo<Coo<ValueType, int64>>::convert_to;
146 using ConvertibleTo<Coo<ValueType, int64>>::move_to;
147 using ConvertibleTo<Csr<ValueType, int32>>::convert_to;
148 using ConvertibleTo<Csr<ValueType, int32>>::move_to;
149 using ConvertibleTo<Csr<ValueType, int64>>::convert_to;
150 using ConvertibleTo<Csr<ValueType, int64>>::move_to;
151 using ConvertibleTo<Ell<ValueType, int32>>::convert_to;
152 using ConvertibleTo<Ell<ValueType, int32>>::move_to;
153 using ConvertibleTo<Ell<ValueType, int64>>::convert_to;
154 using ConvertibleTo<Ell<ValueType, int64>>::move_to;
155 using ConvertibleTo<Fbcsr<ValueType, int32>>::convert_to;
156 using ConvertibleTo<Fbcsr<ValueType, int32>>::move_to;
157 using ConvertibleTo<Fbcsr<ValueType, int64>>::convert_to;
158 using ConvertibleTo<Fbcsr<ValueType, int64>>::move_to;
159 using ConvertibleTo<Hybrid<ValueType, int32>>::convert_to;
160 using ConvertibleTo<Hybrid<ValueType, int32>>::move_to;
161 using ConvertibleTo<Hybrid<ValueType, int64>>::convert_to;
162 using ConvertibleTo<Hybrid<ValueType, int64>>::move_to;
163 using ConvertibleTo<Sellp<ValueType, int32>>::convert_to;
164 using ConvertibleTo<Sellp<ValueType, int32>>::move_to;
165 using ConvertibleTo<Sellp<ValueType, int64>>::convert_to;
166 using ConvertibleTo<Sellp<ValueType, int64>>::move_to;
167 using ConvertibleTo<SparsityCsr<ValueType, int32>>::convert_to;
168 using ConvertibleTo<SparsityCsr<ValueType, int32>>::move_to;
169 using ConvertibleTo<SparsityCsr<ValueType, int64>>::convert_to;
170 using ConvertibleTo<SparsityCsr<ValueType, int64>>::move_to;
174 using value_type = ValueType;
175 using index_type =
int64;
176 using transposed_type = Dense<ValueType>;
177 using mat_data = matrix_data<ValueType, int64>;
178 using mat_data32 = matrix_data<ValueType, int32>;
179 using device_mat_data = device_matrix_data<ValueType, int64>;
180 using device_mat_data32 = device_matrix_data<ValueType, int32>;
181 using absolute_type = remove_complex<Dense>;
182 using real_type = absolute_type;
183 using complex_type = to_complex<Dense>;
200 return (*other).create_with_same_config();
219 return (*other).create_with_type_of_impl(exec, size, size[1]);
235 return (*other).create_with_type_of_impl(exec, size, stride);
253 return (*other).create_with_type_of_impl(exec, size, stride);
266 return other->create_view_of_impl();
279 return other->create_const_view_of_impl();
282 friend class Dense<previous_precision<ValueType>>;
288 #if GINKGO_ENABLE_HALF
289 friend class Dense<previous_precision<previous_precision<ValueType>>>;
358 void read(
const mat_data& data)
override;
360 void read(
const mat_data32& data)
override;
362 void read(
const device_mat_data& data)
override;
364 void read(
const device_mat_data32& data)
override;
366 void read(device_mat_data&& data)
override;
368 void read(device_mat_data32&& data)
override;
370 void write(mat_data& data)
const override;
372 void write(mat_data32& data)
const override;
374 std::unique_ptr<LinOp>
transpose()
const override;
399 void fill(
const ValueType value);
415 std::unique_ptr<Dense>
permute(
422 std::unique_ptr<Dense>
permute(
454 std::unique_ptr<Dense>
permute(
457 bool invert =
false)
const;
463 std::unique_ptr<Dense>
permute(
466 bool invert =
false)
const;
541 bool invert =
false)
const;
551 bool invert =
false)
const;
576 std::unique_ptr<LinOp>
permute(
577 const array<int32>* permutation_indices)
const override;
579 std::unique_ptr<LinOp>
permute(
580 const array<int64>* permutation_indices)
const override;
601 const array<int32>* permutation_indices)
const override;
604 const array<int64>* permutation_indices)
const override;
626 const array<int32>* permutation_indices)
const override;
629 const array<int64>* permutation_indices)
const override;
715 const array<int32>* permutation_indices)
const override;
718 const array<int64>* permutation_indices)
const override;
739 const array<int32>* permutation_indices)
const override;
742 const array<int64>* permutation_indices)
const override;
763 const array<int32>* permutation_indices)
const override;
766 const array<int64>* permutation_indices)
const override;
827 std::unique_ptr<real_type>
get_real()
const;
838 std::unique_ptr<real_type>
get_imag()
const;
894 return values_.
get_data()[linearize_index(row, col)];
921 return values_.
get_data()[linearize_index(idx)];
1127 return this->create_submatrix_impl(
rows,
columns, stride);
1168 static std::unique_ptr<Dense>
create(std::shared_ptr<const Executor> exec,
1188 static std::unique_ptr<Dense>
create(std::shared_ptr<const Executor> exec,
1197 template <
typename InputValueType>
1199 "explicitly construct the gko::array argument instead of passing an"
1202 std::shared_ptr<const
Executor> exec, const
dim<2>& size,
1203 std::initializer_list<InputValueType> values,
size_type stride)
1221 std::shared_ptr<const Executor> exec,
const dim<2>& size,
1222 gko::detail::const_array_view<ValueType>&& values,
size_type stride);
1251 Dense(std::shared_ptr<const Executor> exec,
const dim<2>& size = {},
1254 Dense(std::shared_ptr<const Executor> exec,
const dim<2>& size,
1263 virtual std::unique_ptr<Dense> create_with_same_config()
const
1276 virtual std::unique_ptr<Dense> create_with_type_of_impl(
1277 std::shared_ptr<const Executor> exec,
const dim<2>& size,
1289 virtual std::unique_ptr<Dense> create_view_of_impl()
1305 virtual std::unique_ptr<const Dense> create_const_view_of_impl()
const
1315 template <
typename IndexType>
1316 void convert_impl(Coo<ValueType, IndexType>* result)
const;
1318 template <
typename IndexType>
1319 void convert_impl(Csr<ValueType, IndexType>* result)
const;
1321 template <
typename IndexType>
1322 void convert_impl(Ell<ValueType, IndexType>* result)
const;
1324 template <
typename IndexType>
1325 void convert_impl(Fbcsr<ValueType, IndexType>* result)
const;
1327 template <
typename IndexType>
1328 void convert_impl(Hybrid<ValueType, IndexType>* result)
const;
1330 template <
typename IndexType>
1331 void convert_impl(Sellp<ValueType, IndexType>* result)
const;
1333 template <
typename IndexType>
1334 void convert_impl(SparsityCsr<ValueType, IndexType>* result)
const;
1342 virtual void scale_impl(
const LinOp* alpha);
1350 virtual void inv_scale_impl(
const LinOp* alpha);
1358 virtual void add_scaled_impl(
const LinOp* alpha,
const LinOp* b);
1366 virtual void sub_scaled_impl(
const LinOp* alpha,
const LinOp* b);
1374 virtual void compute_dot_impl(
const LinOp* b,
LinOp* result)
const;
1382 virtual void compute_conj_dot_impl(
const LinOp* b,
LinOp* result)
const;
1390 virtual void compute_norm2_impl(
LinOp* result)
const;
1398 virtual void compute_norm1_impl(
LinOp* result)
const;
1406 virtual void compute_squared_norm2_impl(
LinOp* result)
const;
1411 virtual void compute_mean_impl(
LinOp* result)
const;
1430 virtual std::unique_ptr<Dense> create_submatrix_impl(
1433 void apply_impl(
const LinOp* b,
LinOp* x)
const override;
1435 void apply_impl(
const LinOp* alpha,
const LinOp* b,
const LinOp* beta,
1436 LinOp* x)
const override;
1440 return row * stride_ + col;
1445 return linearize_index(idx / this->
get_size()[1],
1449 template <
typename IndexType>
1450 void permute_impl(
const Permutation<IndexType>* permutation,
1453 template <
typename IndexType>
1454 void permute_impl(
const Permutation<IndexType>* row_permutation,
1455 const Permutation<IndexType>* col_permutation,
1456 bool invert,
Dense* output)
const;
1458 template <
typename IndexType>
1459 void scale_permute_impl(
1460 const ScaledPermutation<ValueType, IndexType>* permutation,
1463 template <
typename IndexType>
1464 void scale_permute_impl(
1465 const ScaledPermutation<ValueType, IndexType>* row_permutation,
1466 const ScaledPermutation<ValueType, IndexType>* column_permutation,
1467 bool invert,
Dense* output)
const;
1469 template <
typename OutputType,
typename IndexType>
1470 void row_gather_impl(
const array<IndexType>* row_idxs,
1471 Dense<OutputType>* row_collection)
const;
1473 template <
typename OutputType,
typename IndexType>
1474 void row_gather_impl(
const Dense<ValueType>* alpha,
1475 const array<IndexType>* row_idxs,
1476 const Dense<ValueType>* beta,
1477 Dense<OutputType>* row_collection)
const;
1481 array<value_type> values_;
1483 void add_scaled_identity_impl(
const LinOp* a,
const LinOp* b)
override;
1493 template <
typename ValueType>
1494 struct temporary_clone_helper<matrix::Dense<ValueType>> {
1495 static std::unique_ptr<matrix::Dense<ValueType>> create(
1496 std::shared_ptr<const Executor> exec, matrix::Dense<ValueType>* ptr,
1518 template <
typename VecPtr>
1519 std::unique_ptr<matrix::Dense<typename detail::pointee<VecPtr>::value_type>>
1522 using value_type =
typename detail::pointee<VecPtr>::value_type;
1534 template <
typename VecPtr>
1536 const matrix::Dense<typename detail::pointee<VecPtr>::value_type>>
1539 using value_type =
typename detail::pointee<VecPtr>::value_type;
1564 template <
typename Matrix,
typename... TArgs>
1566 size_type stride, std::initializer_list<typename Matrix::value_type> vals,
1567 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1571 auto tmp = dense::create(exec->get_master(),
dim<2>{num_rows, 1}, stride);
1573 for (
const auto& elem : vals) {
1574 tmp->
at(idx) = elem;
1577 auto mtx = Matrix::create(exec, std::forward<TArgs>(create_args)...);
1602 template <
typename Matrix,
typename... TArgs>
1604 std::initializer_list<typename Matrix::value_type> vals,
1605 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1607 return initialize<Matrix>(1, vals, std::move(exec),
1608 std::forward<TArgs>(create_args)...);
1632 template <
typename Matrix,
typename... TArgs>
1635 std::initializer_list<std::initializer_list<typename Matrix::value_type>>
1637 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1641 size_type num_cols = num_rows > 0 ? begin(vals)->size() : 1;
1643 dense::create(exec->get_master(),
dim<2>{num_rows, num_cols}, stride);
1645 for (
const auto& row : vals) {
1647 for (
const auto& elem : row) {
1648 tmp->
at(ridx, cidx) = elem;
1653 auto mtx = Matrix::create(exec, std::forward<TArgs>(create_args)...);
1680 template <
typename Matrix,
typename... TArgs>
1682 std::initializer_list<std::initializer_list<typename Matrix::value_type>>
1684 std::shared_ptr<const Executor> exec, TArgs&&... create_args)
1686 return initialize<Matrix>(vals.size() > 0 ? begin(vals)->size() : 0, vals,
1688 std::forward<TArgs>(create_args)...);
1695 #endif // GKO_PUBLIC_CORE_MATRIX_DENSE_HPP_
std::unique_ptr< Dense > permute(ptr_param< const Permutation< int32 >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a permuted copy of this matrix with the given permutation .
std::unique_ptr< LinOp > inverse_column_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
void add_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Adds b scaled by alpha to the matrix (aka: BLAS axpy).
Fixed-block compressed sparse row storage matrix format.
Definition: csr.hpp:46
void move_to(result_type *result) override
Definition: polymorphic_object.hpp:751
void convert_to(result_type *result) const override
Definition: polymorphic_object.hpp:749
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:28
The rows will be permuted.
std::unique_ptr< LinOp > transpose() const override
Returns a LinOp representing the transpose of the Transposable object.
The columns will be permuted.
virtual void read(const matrix_data< ValueType, int32 > &data)=0
Reads a matrix from a matrix_data structure.
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:19
SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressi...
Definition: csr.hpp:40
ValueType at(size_type idx) const noexcept
Returns a single element of the matrix.
Definition: dense.hpp:927
std::unique_ptr< Dense > row_gather(const array< int32 > *gather_indices) const
Create a Dense matrix consisting of the given rows from this matrix.
std::unique_ptr< complex_type > make_complex() const
Creates a complex copy of the original matrix.
static std::unique_ptr< Dense > create(std::shared_ptr< const Executor > exec, const dim< 2 > &size={}, size_type stride=0)
Creates an uninitialized Dense matrix of the specified size.
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size, size_type stride)
Definition: dense.hpp:230
void scale(ptr_param< const LinOp > alpha)
Scales the matrix with a scalar (aka: BLAS scal).
ScaledPermutation is a matrix combining a permutation with scaling factors.
Definition: scaled_permutation.hpp:36
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:89
std::unique_ptr< real_type > get_real() const
Creates a new real matrix and extracts the real part of the original matrix into that.
void inv_scale(ptr_param< const LinOp > alpha)
Scales the matrix with the inverse of a scalar.
Permutation is a matrix format that represents a permutation matrix, i.e.
Definition: permutation.hpp:111
void fill(const ValueType value)
Fill the dense matrix with a given value.
detail::const_array_view< ValueType > make_const_array_view(std::shared_ptr< const Executor > exec, size_type size, const ValueType *data)
Helper function to create a const array view deducing the value type.
Definition: array.hpp:806
void compute_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of this matrix and b.
std::unique_ptr< Dense > create_submatrix(const span &rows, const span &columns, const size_type stride)
Create a submatrix from the original matrix.
Definition: dense.hpp:1123
static std::unique_ptr< Dense > create_with_config_of(ptr_param< const Dense > other)
Creates a Dense matrix with the same size and stride as another Dense matrix.
Definition: dense.hpp:193
std::unique_ptr< Matrix > initialize(size_type stride, std::initializer_list< typename Matrix::value_type > vals, std::shared_ptr< const Executor > exec, TArgs &&... create_args)
Creates and initializes a column-vector.
Definition: dense.hpp:1565
value_type & at(size_type row, size_type col) noexcept
Returns a single element of the matrix.
Definition: dense.hpp:892
detail::cloned_type< Pointer > clone(const Pointer &p)
Creates a unique clone of the object pointed to by p.
Definition: utils_helper.hpp:173
size_type get_stride() const noexcept
Returns the stride of the matrix.
Definition: dense.hpp:870
static std::unique_ptr< Dense > create_view_of(ptr_param< Dense > other)
Creates a Dense matrix, where the underlying array is a view of another Dense matrix' array.
Definition: dense.hpp:264
A range is a multidimensional view of the memory.
Definition: range.hpp:297
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
size_type get_num_stored_elements() const noexcept
Returns the number of elements explicitly stored in the matrix.
Definition: dense.hpp:877
void sub_scaled(ptr_param< const LinOp > alpha, ptr_param< const LinOp > b)
Subtracts b scaled by alpha from the matrix (aka: BLAS axpy).
value_type * get_values() noexcept
Returns a pointer to the array of values of the matrix.
Definition: dense.hpp:851
An array is a container which encapsulates fixed-sized arrays, stored on the Executor tied to the arr...
Definition: array.hpp:26
void compute_norm2(ptr_param< LinOp > result) const
Computes the column-wise Euclidean (L^2) norm of this matrix.
std::unique_ptr< LinOp > row_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the Permutable object.
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size=dim< 2 >{})
Creates a Dense matrix with the same type as another Dense matrix but on a different executor and wit...
Definition: dense.hpp:214
A span is a lightweight structure used to create sub-ranges from other ranges.
Definition: range.hpp:46
This class is a utility which efficiently implements the diagonal matrix (a linear operator which sca...
Definition: lin_op.hpp:31
static std::unique_ptr< const Dense > create_const(std::shared_ptr< const Executor > exec, const dim< 2 > &size, gko::detail::const_array_view< ValueType > &&values, size_type stride)
Creates a constant (immutable) Dense matrix from a constant array.
This class is used for function parameters in the place of raw pointers.
Definition: utils_helper.hpp:41
value_type at(size_type row, size_type col) const noexcept
Returns a single element of the matrix.
Definition: dense.hpp:900
value_type * get_data() noexcept
Returns a pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:673
void compute_mean(ptr_param< LinOp > result) const
Computes the column-wise arithmetic mean of this matrix.
std::unique_ptr< LinOp > inverse_row_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
The rows and columns will be permuted.
std::unique_ptr< real_type > get_imag() const
Creates a new real matrix and extracts the imaginary part of the original matrix into that.
void compute_squared_norm2(ptr_param< LinOp > result) const
Computes the square of the column-wise Euclidean (L^2) norm of this matrix.
Dense & operator=(const Dense &)
Copy-assigns a Dense matrix.
std::unique_ptr< LinOp > inverse_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the symmetric inverse row and column permutation of the Permutable objec...
static std::unique_ptr< Dense > create_with_type_of(ptr_param< const Dense > other, std::shared_ptr< const Executor > exec, const dim< 2 > &size, const dim< 2 > &local_size, size_type stride)
Definition: dense.hpp:248
mode
The mode for the residual norm criterion.
Definition: residual_norm.hpp:38
std::unique_ptr< Dense > scale_permute(ptr_param< const ScaledPermutation< value_type, int32 >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a scaled and permuted copy of this matrix.
void compute_norm1(ptr_param< LinOp > result) const
Computes the column-wise (L^1) norm of this matrix.
const value_type * get_const_values() const noexcept
Returns a pointer to the array of values of the matrix.
Definition: dense.hpp:860
array< ValueType > make_array_view(std::shared_ptr< const Executor > exec, size_type size, ValueType *data)
Helper function to create an array view deducing the value type.
Definition: array.hpp:787
std::unique_ptr< Diagonal< ValueType > > extract_diagonal() const override
Extracts the diagonal entries of the matrix into a vector.
void compute_absolute_inplace() override
Compute absolute inplace on each element.
next_precision_base< T > next_precision
Obtains the next type in the singly-linked precision list with half.
Definition: math.hpp:445
std::unique_ptr< LinOp > column_permute(const array< int32 > *permutation_indices) const override
Returns a LinOp representing the column permutation of the Permutable object.
static std::unique_ptr< const Dense > create_const_view_of(ptr_param< const Dense > other)
Creates a immutable Dense matrix, where the underlying array is a view of another Dense matrix' array...
Definition: dense.hpp:276
ValueType & at(size_type idx) noexcept
Returns a single element of the matrix.
Definition: dense.hpp:919
std::unique_ptr< LinOp > conj_transpose() const override
Returns a LinOp representing the conjugate transpose of the Transposable object.
std::int64_t int64
64-bit signed integral type.
Definition: types.hpp:112
void compute_conj_dot(ptr_param< const LinOp > b, ptr_param< LinOp > result) const
Computes the column-wise dot product of conj(this matrix) and b.
ELL is a matrix format where stride with explicit zeros is used such that all rows have the same numb...
Definition: csr.hpp:31
ConvertibleTo interface is used to mark that the implementer can be converted to the object of Result...
Definition: polymorphic_object.hpp:479
std::unique_ptr< Dense > create_submatrix(const span &rows, const span &columns)
Create a submatrix from the original matrix.
Definition: dense.hpp:1136
std::int32_t int32
32-bit signed integral type.
Definition: types.hpp:106
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
std::unique_ptr< matrix::Dense< typename detail::pointee< VecPtr >::value_type > > make_dense_view(VecPtr &&vector)
Creates a view of a given Dense vector.
Definition: dense.hpp:1520
The first step in using the Ginkgo library consists of creating an executor.
Definition: executor.hpp:615
HYBRID is a matrix format which splits the matrix into ELLPACK and COO format.
Definition: coo.hpp:32
const value_type * get_const_data() const noexcept
Returns a constant pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:682
permute_mode
Specifies how a permutation will be applied to a matrix.
Definition: permutation.hpp:42
Dense(const Dense &)
Copy-constructs a Dense matrix.
SELL-P is a matrix format similar to ELL format.
Definition: csr.hpp:37
std::unique_ptr< const matrix::Dense< typename detail::pointee< VecPtr >::value_type > > make_const_dense_view(VecPtr &&vector)
Creates a view of a given Dense vector.
Definition: dense.hpp:1537
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor of the object.
Definition: polymorphic_object.hpp:243
size_type get_size() const noexcept
Returns the number of elements in the array.
Definition: array.hpp:656
const dim< 2 > & get_size() const noexcept
Returns the size of the operator.
Definition: lin_op.hpp:210
std::unique_ptr< real_type > create_real_view()
Create a real view of the (potentially) complex original matrix.
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:279
COO stores a matrix in the coordinate matrix format.
Definition: coo.hpp:50