The customized multigrid preconditioned solver example..
This example depends on multigrid-preconditioned-solver.
This example shows how to customize the multigrid preconditioner.
In this example, we first read in a matrix from a file. The preconditioned CG solver is enhanced with a multigrid preconditioner. Several non-default options are used to create this preconditioner. The example features the generating time and runtime of the CG solver.
The commented program
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
Read data
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
Create RHS as 1 and initial guess as 0
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
Calculate initial residual by overwriting b
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
copy b again
Prepare the stopping criteria
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
auto exact_tol_stop =
.with_baseline(gko::stop::mode::rhs_norm)
.with_reduction_factor(1e-14)
.on(exec));
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
iter_stop->add_logger(logger);
tol_stop->add_logger(logger);
Now we customize some settings of the multigrid preconditioner. First we choose a smoother. Since the input matrix is spd, we use iterative refinement with two iterations and an Ic solver.
Use Pgm as the MultigridLevel factory.
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(
true).on(exec));
Next we select a CG solver for the coarsest level. Again, since the input matrix is known to be spd, and the Pgm restriction preserves this characteristic, we can safely choose the CG. We reuse the Ic factory here to generate an Ic preconditioner. It is important to solve until machine precision here to get a good convergence rate.
.with_preconditioner(ic_gen)
.with_criteria(iter_stop, exact_tol_stop)
.on(exec));
Here we put the customized options together and create the multigrid factory.
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(32u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_gen)
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);
Create solver factory
auto solver_gen = cg::build()
.with_criteria(iter_stop, tol_stop)
.with_preconditioner(multigrid_gen)
.on(exec);
Create solver
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
Solve system
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
Calculate residual
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
Print solver statistics
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}
Results
This is the expected output:
Initial residual norm sqrt(r^T r):
1 1
25.9808
Final residual norm sqrt(r^T r):
1 1
5.81328e-09
CG iteration count: 12
CG generation time [ms]: 1.41642
CG execution time [ms]: 6.59244
CG execution time per iteration[ms]: 0.54937
Comments about programming and debugging
The plain program
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
#include <ginkgo/ginkgo.hpp>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
auto A =
share(gko::read<mtx>(std::ifstream(
"data/A.mtx"), exec));
auto host_x = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(),
gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_b);
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
auto exact_tol_stop =
.with_baseline(gko::stop::mode::rhs_norm)
.with_reduction_factor(1e-14)
.on(exec));
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
iter_stop->add_logger(logger);
tol_stop->add_logger(logger);
ic::build()
.on(exec));
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(
true).on(exec));
.with_preconditioner(ic_gen)
.with_criteria(iter_stop, exact_tol_stop)
.on(exec));
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(32u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_gen)
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);
auto solver_gen = cg::build()
.with_criteria(iter_stop, tol_stop)
.with_preconditioner(multigrid_gen)
.on(exec);
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}