Ginkgo  Generated from pipelines/1680925034 branch based on develop. Ginkgo version 1.10.0
A numerical linear algebra library targeting many-core architectures
csr.hpp
1 // SPDX-FileCopyrightText: 2017 - 2025 The Ginkgo authors
2 //
3 // SPDX-License-Identifier: BSD-3-Clause
4 
5 #ifndef GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
6 #define GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
7 
8 
9 #include <ginkgo/core/base/array.hpp>
10 #include <ginkgo/core/base/index_set.hpp>
11 #include <ginkgo/core/base/lin_op.hpp>
12 #include <ginkgo/core/base/math.hpp>
13 #include <ginkgo/core/matrix/permutation.hpp>
14 #include <ginkgo/core/matrix/scaled_permutation.hpp>
15 
16 
17 namespace gko {
18 namespace matrix {
19 
20 
21 template <typename ValueType>
22 class Dense;
23 
24 template <typename ValueType>
25 class Diagonal;
26 
27 template <typename ValueType, typename IndexType>
28 class Coo;
29 
30 template <typename ValueType, typename IndexType>
31 class Ell;
32 
33 template <typename ValueType, typename IndexType>
34 class Hybrid;
35 
36 template <typename ValueType, typename IndexType>
37 class Sellp;
38 
39 template <typename ValueType, typename IndexType>
41 
42 template <typename ValueType, typename IndexType>
43 class Csr;
44 
45 template <typename ValueType, typename IndexType>
46 class Fbcsr;
47 
48 template <typename ValueType, typename IndexType>
49 class CsrBuilder;
50 
51 template <typename IndexType>
53 
54 
55 namespace detail {
56 
57 
58 template <typename ValueType = default_precision, typename IndexType = int32>
59 void strategy_rebuild_helper(Csr<ValueType, IndexType>* result);
60 
61 
62 } // namespace detail
63 
64 
103 template <typename ValueType = default_precision, typename IndexType = int32>
104 class Csr : public EnableLinOp<Csr<ValueType, IndexType>>,
105  public ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>,
106 #if GINKGO_ENABLE_HALF
107  public ConvertibleTo<
108  Csr<next_precision<next_precision<ValueType>>, IndexType>>,
109 #endif
110  public ConvertibleTo<Dense<ValueType>>,
111  public ConvertibleTo<Coo<ValueType, IndexType>>,
112  public ConvertibleTo<Ell<ValueType, IndexType>>,
113  public ConvertibleTo<Fbcsr<ValueType, IndexType>>,
114  public ConvertibleTo<Hybrid<ValueType, IndexType>>,
115  public ConvertibleTo<Sellp<ValueType, IndexType>>,
116  public ConvertibleTo<SparsityCsr<ValueType, IndexType>>,
117  public DiagonalExtractable<ValueType>,
118  public ReadableFromMatrixData<ValueType, IndexType>,
119  public WritableToMatrixData<ValueType, IndexType>,
120  public Transposable,
121  public Permutable<IndexType>,
123  remove_complex<Csr<ValueType, IndexType>>>,
124  public ScaledIdentityAddable {
125  friend class EnablePolymorphicObject<Csr, LinOp>;
126  friend class Coo<ValueType, IndexType>;
127  friend class Dense<ValueType>;
128  friend class Diagonal<ValueType>;
129  friend class Ell<ValueType, IndexType>;
130  friend class Hybrid<ValueType, IndexType>;
131  friend class Sellp<ValueType, IndexType>;
132  friend class SparsityCsr<ValueType, IndexType>;
133  friend class Fbcsr<ValueType, IndexType>;
134  friend class CsrBuilder<ValueType, IndexType>;
135  friend class Csr<to_complex<ValueType>, IndexType>;
136 
137 public:
140  using ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>::convert_to;
141  using ConvertibleTo<Csr<next_precision<ValueType>, IndexType>>::move_to;
142  using ConvertibleTo<Dense<ValueType>>::convert_to;
143  using ConvertibleTo<Dense<ValueType>>::move_to;
144  using ConvertibleTo<Coo<ValueType, IndexType>>::convert_to;
146  using ConvertibleTo<Ell<ValueType, IndexType>>::convert_to;
157 
158  using value_type = ValueType;
159  using index_type = IndexType;
160  using transposed_type = Csr<ValueType, IndexType>;
161  using mat_data = matrix_data<ValueType, IndexType>;
162  using device_mat_data = device_matrix_data<ValueType, IndexType>;
163  using absolute_type = remove_complex<Csr>;
164 
165  class automatical;
166 
174  friend class automatical;
175 
176  public:
182  strategy_type(std::string name) : name_(name) {}
183 
184  virtual ~strategy_type() = default;
185 
191  std::string get_name() { return name_; }
192 
199  virtual void process(const array<index_type>& mtx_row_ptrs,
200  array<index_type>* mtx_srow) = 0;
201 
209  virtual int64_t clac_size(const int64_t nnz) = 0;
210 
215  virtual std::shared_ptr<strategy_type> copy() = 0;
216 
217  protected:
218  void set_name(std::string name) { name_ = name; }
219 
220  private:
221  std::string name_;
222  };
223 
230  class classical : public strategy_type {
231  public:
235  classical() : strategy_type("classical"), max_length_per_row_(0) {}
236 
237  void process(const array<index_type>& mtx_row_ptrs,
238  array<index_type>* mtx_srow) override
239  {
240  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
241  array<index_type> row_ptrs_host(host_mtx_exec);
242  const bool is_mtx_on_host{host_mtx_exec ==
243  mtx_row_ptrs.get_executor()};
244  const index_type* row_ptrs{};
245  if (is_mtx_on_host) {
246  row_ptrs = mtx_row_ptrs.get_const_data();
247  } else {
248  row_ptrs_host = mtx_row_ptrs;
249  row_ptrs = row_ptrs_host.get_const_data();
250  }
251  auto num_rows = mtx_row_ptrs.get_size() - 1;
252  max_length_per_row_ = 0;
253  for (size_type i = 0; i < num_rows; i++) {
254  max_length_per_row_ = std::max(max_length_per_row_,
255  row_ptrs[i + 1] - row_ptrs[i]);
256  }
257  }
258 
259  int64_t clac_size(const int64_t nnz) override { return 0; }
260 
261  index_type get_max_length_per_row() const noexcept
262  {
263  return max_length_per_row_;
264  }
265 
266  std::shared_ptr<strategy_type> copy() override
267  {
268  return std::make_shared<classical>();
269  }
270 
271  private:
272  index_type max_length_per_row_;
273  };
274 
280  class merge_path : public strategy_type {
281  public:
285  merge_path() : strategy_type("merge_path") {}
286 
287  void process(const array<index_type>& mtx_row_ptrs,
288  array<index_type>* mtx_srow) override
289  {}
290 
291  int64_t clac_size(const int64_t nnz) override { return 0; }
292 
293  std::shared_ptr<strategy_type> copy() override
294  {
295  return std::make_shared<merge_path>();
296  }
297  };
298 
305  class cusparse : public strategy_type {
306  public:
310  cusparse() : strategy_type("cusparse") {}
311 
312  void process(const array<index_type>& mtx_row_ptrs,
313  array<index_type>* mtx_srow) override
314  {}
315 
316  int64_t clac_size(const int64_t nnz) override { return 0; }
317 
318  std::shared_ptr<strategy_type> copy() override
319  {
320  return std::make_shared<cusparse>();
321  }
322  };
323 
329  class sparselib : public strategy_type {
330  public:
334  sparselib() : strategy_type("sparselib") {}
335 
336  void process(const array<index_type>& mtx_row_ptrs,
337  array<index_type>* mtx_srow) override
338  {}
339 
340  int64_t clac_size(const int64_t nnz) override { return 0; }
341 
342  std::shared_ptr<strategy_type> copy() override
343  {
344  return std::make_shared<sparselib>();
345  }
346  };
347 
351  class load_balance : public strategy_type {
352  public:
359  [[deprecated]] load_balance()
360  : load_balance(std::move(
362  {}
363 
369  load_balance(std::shared_ptr<const CudaExecutor> exec)
370  : load_balance(exec->get_num_warps(), exec->get_warp_size())
371  {}
372 
378  load_balance(std::shared_ptr<const HipExecutor> exec)
379  : load_balance(exec->get_num_warps(), exec->get_warp_size(), false)
380  {}
381 
389  load_balance(std::shared_ptr<const DpcppExecutor> exec)
390  : load_balance(exec->get_num_subgroups(), 32, false, "intel")
391  {}
392 
404  load_balance(int64_t nwarps, int warp_size = 32,
405  bool cuda_strategy = true,
406  std::string strategy_name = "none")
407  : strategy_type("load_balance"),
408  nwarps_(nwarps),
409  warp_size_(warp_size),
410  cuda_strategy_(cuda_strategy),
411  strategy_name_(strategy_name)
412  {}
413 
414  void process(const array<index_type>& mtx_row_ptrs,
415  array<index_type>* mtx_srow) override
416  {
417  auto nwarps = mtx_srow->get_size();
418 
419  if (nwarps > 0) {
420  auto host_srow_exec = mtx_srow->get_executor()->get_master();
421  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
422  const bool is_srow_on_host{host_srow_exec ==
423  mtx_srow->get_executor()};
424  const bool is_mtx_on_host{host_mtx_exec ==
425  mtx_row_ptrs.get_executor()};
426  array<index_type> row_ptrs_host(host_mtx_exec);
427  array<index_type> srow_host(host_srow_exec);
428  const index_type* row_ptrs{};
429  index_type* srow{};
430  if (is_srow_on_host) {
431  srow = mtx_srow->get_data();
432  } else {
433  srow_host = *mtx_srow;
434  srow = srow_host.get_data();
435  }
436  if (is_mtx_on_host) {
437  row_ptrs = mtx_row_ptrs.get_const_data();
438  } else {
439  row_ptrs_host = mtx_row_ptrs;
440  row_ptrs = row_ptrs_host.get_const_data();
441  }
442  for (size_type i = 0; i < nwarps; i++) {
443  srow[i] = 0;
444  }
445  const auto num_rows = mtx_row_ptrs.get_size() - 1;
446  const auto num_elems = row_ptrs[num_rows];
447  const auto bucket_divider =
448  num_elems > 0 ? ceildiv(num_elems, warp_size_) : 1;
449  for (size_type i = 0; i < num_rows; i++) {
450  auto bucket =
451  ceildiv((ceildiv(row_ptrs[i + 1], warp_size_) * nwarps),
452  bucket_divider);
453  if (bucket < nwarps) {
454  srow[bucket]++;
455  }
456  }
457  // find starting row for thread i
458  for (size_type i = 1; i < nwarps; i++) {
459  srow[i] += srow[i - 1];
460  }
461  if (!is_srow_on_host) {
462  *mtx_srow = srow_host;
463  }
464  }
465  }
466 
467  int64_t clac_size(const int64_t nnz) override
468  {
469  if (warp_size_ > 0) {
470  int multiple = 8;
471  if (nnz >= static_cast<int64_t>(2e8)) {
472  multiple = 2048;
473  } else if (nnz >= static_cast<int64_t>(2e7)) {
474  multiple = 512;
475  } else if (nnz >= static_cast<int64_t>(2e6)) {
476  multiple = 128;
477  } else if (nnz >= static_cast<int64_t>(2e5)) {
478  multiple = 32;
479  }
480  if (strategy_name_ == "intel") {
481  multiple = 8;
482  if (nnz >= static_cast<int64_t>(2e8)) {
483  multiple = 256;
484  } else if (nnz >= static_cast<int64_t>(2e7)) {
485  multiple = 32;
486  }
487  }
488 #if GINKGO_HIP_PLATFORM_HCC
489  if (!cuda_strategy_) {
490  multiple = 8;
491  if (nnz >= static_cast<int64_t>(1e7)) {
492  multiple = 64;
493  } else if (nnz >= static_cast<int64_t>(1e6)) {
494  multiple = 16;
495  }
496  }
497 #endif // GINKGO_HIP_PLATFORM_HCC
498 
499  auto nwarps = nwarps_ * multiple;
500  return min(ceildiv(nnz, warp_size_), nwarps);
501  } else {
502  return 0;
503  }
504  }
505 
506  std::shared_ptr<strategy_type> copy() override
507  {
508  return std::make_shared<load_balance>(
509  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
510  }
511 
512  private:
513  int64_t nwarps_;
514  int warp_size_;
515  bool cuda_strategy_;
516  std::string strategy_name_;
517  };
518 
519  class automatical : public strategy_type {
520  public:
521  /* Use imbalance strategy when the maximum number of nonzero per row is
522  * more than 1024 on NVIDIA hardware */
523  const index_type nvidia_row_len_limit = 1024;
524  /* Use imbalance strategy when the matrix has more more than 1e6 on
525  * NVIDIA hardware */
526  const index_type nvidia_nnz_limit{static_cast<index_type>(1e6)};
527  /* Use imbalance strategy when the maximum number of nonzero per row is
528  * more than 768 on AMD hardware */
529  const index_type amd_row_len_limit = 768;
530  /* Use imbalance strategy when the matrix has more more than 1e8 on AMD
531  * hardware */
532  const index_type amd_nnz_limit{static_cast<index_type>(1e8)};
533  /* Use imbalance strategy when the maximum number of nonzero per row is
534  * more than 25600 on Intel hardware */
535  const index_type intel_row_len_limit = 25600;
536  /* Use imbalance strategy when the matrix has more more than 3e8 on
537  * Intel hardware */
538  const index_type intel_nnz_limit{static_cast<index_type>(3e8)};
539 
540  public:
547  [[deprecated]] automatical()
548  : automatical(std::move(
550  {}
551 
557  automatical(std::shared_ptr<const CudaExecutor> exec)
558  : automatical(exec->get_num_warps(), exec->get_warp_size())
559  {}
560 
566  automatical(std::shared_ptr<const HipExecutor> exec)
567  : automatical(exec->get_num_warps(), exec->get_warp_size(), false)
568  {}
569 
577  automatical(std::shared_ptr<const DpcppExecutor> exec)
578  : automatical(exec->get_num_subgroups(), 32, false, "intel")
579  {}
580 
592  automatical(int64_t nwarps, int warp_size = 32,
593  bool cuda_strategy = true,
594  std::string strategy_name = "none")
595  : strategy_type("automatical"),
596  nwarps_(nwarps),
597  warp_size_(warp_size),
598  cuda_strategy_(cuda_strategy),
599  strategy_name_(strategy_name),
600  max_length_per_row_(0)
601  {}
602 
603  void process(const array<index_type>& mtx_row_ptrs,
604  array<index_type>* mtx_srow) override
605  {
606  // if the number of stored elements is larger than <nnz_limit> or
607  // the maximum number of stored elements per row is larger than
608  // <row_len_limit>, use load_balance otherwise use classical
609  index_type nnz_limit = nvidia_nnz_limit;
610  index_type row_len_limit = nvidia_row_len_limit;
611  if (strategy_name_ == "intel") {
612  nnz_limit = intel_nnz_limit;
613  row_len_limit = intel_row_len_limit;
614  }
615 #if GINKGO_HIP_PLATFORM_HCC
616  if (!cuda_strategy_) {
617  nnz_limit = amd_nnz_limit;
618  row_len_limit = amd_row_len_limit;
619  }
620 #endif // GINKGO_HIP_PLATFORM_HCC
621  auto host_mtx_exec = mtx_row_ptrs.get_executor()->get_master();
622  const bool is_mtx_on_host{host_mtx_exec ==
623  mtx_row_ptrs.get_executor()};
624  array<index_type> row_ptrs_host(host_mtx_exec);
625  const index_type* row_ptrs{};
626  if (is_mtx_on_host) {
627  row_ptrs = mtx_row_ptrs.get_const_data();
628  } else {
629  row_ptrs_host = mtx_row_ptrs;
630  row_ptrs = row_ptrs_host.get_const_data();
631  }
632  const auto num_rows = mtx_row_ptrs.get_size() - 1;
633  if (row_ptrs[num_rows] > nnz_limit) {
634  load_balance actual_strategy(nwarps_, warp_size_,
635  cuda_strategy_, strategy_name_);
636  if (is_mtx_on_host) {
637  actual_strategy.process(mtx_row_ptrs, mtx_srow);
638  } else {
639  actual_strategy.process(row_ptrs_host, mtx_srow);
640  }
641  this->set_name(actual_strategy.get_name());
642  } else {
643  index_type maxnum = 0;
644  for (size_type i = 0; i < num_rows; i++) {
645  maxnum = std::max(maxnum, row_ptrs[i + 1] - row_ptrs[i]);
646  }
647  if (maxnum > row_len_limit) {
648  load_balance actual_strategy(
649  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
650  if (is_mtx_on_host) {
651  actual_strategy.process(mtx_row_ptrs, mtx_srow);
652  } else {
653  actual_strategy.process(row_ptrs_host, mtx_srow);
654  }
655  this->set_name(actual_strategy.get_name());
656  } else {
657  classical actual_strategy;
658  if (is_mtx_on_host) {
659  actual_strategy.process(mtx_row_ptrs, mtx_srow);
660  max_length_per_row_ =
661  actual_strategy.get_max_length_per_row();
662  } else {
663  actual_strategy.process(row_ptrs_host, mtx_srow);
664  max_length_per_row_ =
665  actual_strategy.get_max_length_per_row();
666  }
667  this->set_name(actual_strategy.get_name());
668  }
669  }
670  }
671 
672  int64_t clac_size(const int64_t nnz) override
673  {
674  return std::make_shared<load_balance>(
675  nwarps_, warp_size_, cuda_strategy_, strategy_name_)
676  ->clac_size(nnz);
677  }
678 
679  index_type get_max_length_per_row() const noexcept
680  {
681  return max_length_per_row_;
682  }
683 
684  std::shared_ptr<strategy_type> copy() override
685  {
686  return std::make_shared<automatical>(
687  nwarps_, warp_size_, cuda_strategy_, strategy_name_);
688  }
689 
690  private:
691  int64_t nwarps_;
692  int warp_size_;
693  bool cuda_strategy_;
694  std::string strategy_name_;
695  index_type max_length_per_row_;
696  };
697 
698  friend class Csr<previous_precision<ValueType>, IndexType>;
699 
700  void convert_to(
701  Csr<next_precision<ValueType>, IndexType>* result) const override;
702 
703  void move_to(Csr<next_precision<ValueType>, IndexType>* result) override;
704 
705 #if GINKGO_ENABLE_HALF
706  friend class Csr<previous_precision<previous_precision<ValueType>>,
707  IndexType>;
708  using ConvertibleTo<
709  Csr<next_precision<next_precision<ValueType>>, IndexType>>::convert_to;
710  using ConvertibleTo<
711  Csr<next_precision<next_precision<ValueType>>, IndexType>>::move_to;
712 
713  void convert_to(Csr<next_precision<next_precision<ValueType>>, IndexType>*
714  result) const override;
715 
716  void move_to(Csr<next_precision<next_precision<ValueType>>, IndexType>*
717  result) override;
718 #endif
719 
720  void convert_to(Dense<ValueType>* other) const override;
721 
722  void move_to(Dense<ValueType>* other) override;
723 
724  void convert_to(Coo<ValueType, IndexType>* result) const override;
725 
726  void move_to(Coo<ValueType, IndexType>* result) override;
727 
728  void convert_to(Ell<ValueType, IndexType>* result) const override;
729 
730  void move_to(Ell<ValueType, IndexType>* result) override;
731 
732  void convert_to(Fbcsr<ValueType, IndexType>* result) const override;
733 
734  void move_to(Fbcsr<ValueType, IndexType>* result) override;
735 
736  void convert_to(Hybrid<ValueType, IndexType>* result) const override;
737 
738  void move_to(Hybrid<ValueType, IndexType>* result) override;
739 
740  void convert_to(Sellp<ValueType, IndexType>* result) const override;
741 
742  void move_to(Sellp<ValueType, IndexType>* result) override;
743 
744  void convert_to(SparsityCsr<ValueType, IndexType>* result) const override;
745 
746  void move_to(SparsityCsr<ValueType, IndexType>* result) override;
747 
748  void read(const mat_data& data) override;
749 
750  void read(const device_mat_data& data) override;
751 
752  void read(device_mat_data&& data) override;
753 
754  void write(mat_data& data) const override;
755 
756  std::unique_ptr<LinOp> transpose() const override;
757 
758  std::unique_ptr<LinOp> conj_transpose() const override;
759 
766  explicit permuting_reuse_info();
767 
770  std::unique_ptr<Permutation<index_type>> value_permutation);
771 
780  ptr_param<Csr> output) const;
781 
782  std::unique_ptr<Permutation<IndexType>> value_permutation;
783  };
784 
796  std::pair<std::unique_ptr<Csr>, permuting_reuse_info> transpose_reuse()
797  const;
798 
813  std::unique_ptr<Csr> permute(
814  ptr_param<const Permutation<index_type>> permutation,
816 
830  std::unique_ptr<Csr> permute(
831  ptr_param<const Permutation<index_type>> row_permutation,
832  ptr_param<const Permutation<index_type>> column_permutation,
833  bool invert = false) const;
834 
855  std::pair<std::unique_ptr<Csr>, permuting_reuse_info> permute_reuse(
856  ptr_param<const Permutation<index_type>> permutation,
858 
877  std::pair<std::unique_ptr<Csr>, permuting_reuse_info> permute_reuse(
878  ptr_param<const Permutation<index_type>> row_permutation,
879  ptr_param<const Permutation<index_type>> column_permutation,
880  bool invert = false) const;
881 
891  std::unique_ptr<Csr> scale_permute(
894 
907  std::unique_ptr<Csr> scale_permute(
909  row_permutation,
911  column_permutation,
912  bool invert = false) const;
913 
914  std::unique_ptr<LinOp> permute(
915  const array<IndexType>* permutation_indices) const override;
916 
917  std::unique_ptr<LinOp> inverse_permute(
918  const array<IndexType>* inverse_permutation_indices) const override;
919 
920  std::unique_ptr<LinOp> row_permute(
921  const array<IndexType>* permutation_indices) const override;
922 
923  std::unique_ptr<LinOp> column_permute(
924  const array<IndexType>* permutation_indices) const override;
925 
926  std::unique_ptr<LinOp> inverse_row_permute(
927  const array<IndexType>* inverse_permutation_indices) const override;
928 
929  std::unique_ptr<LinOp> inverse_column_permute(
930  const array<IndexType>* inverse_permutation_indices) const override;
931 
932  std::unique_ptr<Diagonal<ValueType>> extract_diagonal() const override;
933 
934  std::unique_ptr<absolute_type> compute_absolute() const override;
935 
936  void compute_absolute_inplace() override;
937 
941  void sort_by_column_index();
942 
943  /*
944  * Tests if all row entry pairs (value, col_idx) are sorted by column index
945  *
946  * @returns True if all row entry pairs (value, col_idx) are sorted by
947  * column index
948  */
949  bool is_sorted_by_column_index() const;
950 
956  value_type* get_values() noexcept { return values_.get_data(); }
957 
965  const value_type* get_const_values() const noexcept
966  {
967  return values_.get_const_data();
968  }
969 
974  std::unique_ptr<Dense<ValueType>> create_value_view();
975 
980  std::unique_ptr<const Dense<ValueType>> create_const_value_view() const;
981 
987  index_type* get_col_idxs() noexcept { return col_idxs_.get_data(); }
988 
996  const index_type* get_const_col_idxs() const noexcept
997  {
998  return col_idxs_.get_const_data();
999  }
1000 
1006  index_type* get_row_ptrs() noexcept { return row_ptrs_.get_data(); }
1007 
1015  const index_type* get_const_row_ptrs() const noexcept
1016  {
1017  return row_ptrs_.get_const_data();
1018  }
1019 
1025  index_type* get_srow() noexcept { return srow_.get_data(); }
1026 
1034  const index_type* get_const_srow() const noexcept
1035  {
1036  return srow_.get_const_data();
1037  }
1038 
1045  {
1046  return srow_.get_size();
1047  }
1048 
1055  {
1056  return values_.get_size();
1057  }
1058 
1063  std::shared_ptr<strategy_type> get_strategy() const noexcept
1064  {
1065  return strategy_;
1066  }
1067 
1073  void set_strategy(std::shared_ptr<strategy_type> strategy)
1074  {
1075  strategy_ = std::move(strategy->copy());
1076  this->make_srow();
1077  }
1078 
1086  {
1087  auto exec = this->get_executor();
1088  GKO_ASSERT_EQUAL_DIMENSIONS(alpha, dim<2>(1, 1));
1089  this->scale_impl(make_temporary_clone(exec, alpha).get());
1090  }
1091 
1099  {
1100  auto exec = this->get_executor();
1101  GKO_ASSERT_EQUAL_DIMENSIONS(alpha, dim<2>(1, 1));
1102  this->inv_scale_impl(make_temporary_clone(exec, alpha).get());
1103  }
1104 
1113  static std::unique_ptr<Csr> create(std::shared_ptr<const Executor> exec,
1114  std::shared_ptr<strategy_type> strategy);
1115 
1127  static std::unique_ptr<Csr> create(
1128  std::shared_ptr<const Executor> exec, const dim<2>& size = {},
1129  size_type num_nonzeros = {},
1130  std::shared_ptr<strategy_type> strategy = nullptr);
1131 
1151  static std::unique_ptr<Csr> create(
1152  std::shared_ptr<const Executor> exec, const dim<2>& size,
1153  array<value_type> values, array<index_type> col_idxs,
1154  array<index_type> row_ptrs,
1155  std::shared_ptr<strategy_type> strategy = nullptr);
1156 
1161  template <typename InputValueType, typename InputColumnIndexType,
1162  typename InputRowPtrType>
1163  GKO_DEPRECATED(
1164  "explicitly construct the gko::array argument instead of passing "
1165  "initializer lists")
1166  static std::unique_ptr<Csr> create(
1167  std::shared_ptr<const Executor> exec, const dim<2>& size,
1168  std::initializer_list<InputValueType> values,
1169  std::initializer_list<InputColumnIndexType> col_idxs,
1170  std::initializer_list<InputRowPtrType> row_ptrs)
1171  {
1172  return create(exec, size, array<value_type>{exec, std::move(values)},
1173  array<index_type>{exec, std::move(col_idxs)},
1174  array<index_type>{exec, std::move(row_ptrs)});
1175  }
1176 
1192  static std::unique_ptr<const Csr> create_const(
1193  std::shared_ptr<const Executor> exec, const dim<2>& size,
1194  gko::detail::const_array_view<ValueType>&& values,
1195  gko::detail::const_array_view<IndexType>&& col_idxs,
1196  gko::detail::const_array_view<IndexType>&& row_ptrs,
1197  std::shared_ptr<strategy_type> strategy = nullptr);
1198 
1211  std::unique_ptr<Csr<ValueType, IndexType>> create_submatrix(
1212  const index_set<IndexType>& row_index_set,
1213  const index_set<IndexType>& column_index_set) const;
1214 
1226  std::unique_ptr<Csr<ValueType, IndexType>> create_submatrix(
1227  const span& row_span, const span& column_span) const;
1228 
1232  Csr& operator=(const Csr&);
1233 
1239  Csr& operator=(Csr&&);
1240 
1244  Csr(const Csr&);
1245 
1251  Csr(Csr&&);
1252 
1253 protected:
1254  Csr(std::shared_ptr<const Executor> exec, const dim<2>& size = {},
1255  size_type num_nonzeros = {},
1256  std::shared_ptr<strategy_type> strategy = nullptr);
1257 
1258  Csr(std::shared_ptr<const Executor> exec, const dim<2>& size,
1259  array<value_type> values, array<index_type> col_idxs,
1260  array<index_type> row_ptrs,
1261  std::shared_ptr<strategy_type> strategy = nullptr);
1262 
1263  void apply_impl(const LinOp* b, LinOp* x) const override;
1264 
1265  void apply_impl(const LinOp* alpha, const LinOp* b, const LinOp* beta,
1266  LinOp* x) const override;
1267 
1268  // TODO: This provides some more sane settings. Please fix this!
1269  static std::shared_ptr<strategy_type> make_default_strategy(
1270  std::shared_ptr<const Executor> exec)
1271  {
1272  auto cuda_exec = std::dynamic_pointer_cast<const CudaExecutor>(exec);
1273  auto hip_exec = std::dynamic_pointer_cast<const HipExecutor>(exec);
1274  auto dpcpp_exec = std::dynamic_pointer_cast<const DpcppExecutor>(exec);
1275  std::shared_ptr<strategy_type> new_strategy;
1276  if (cuda_exec) {
1277  new_strategy = std::make_shared<automatical>(cuda_exec);
1278  } else if (hip_exec) {
1279  new_strategy = std::make_shared<automatical>(hip_exec);
1280  } else if (dpcpp_exec) {
1281  new_strategy = std::make_shared<automatical>(dpcpp_exec);
1282  } else {
1283  new_strategy = std::make_shared<classical>();
1284  }
1285  return new_strategy;
1286  }
1287 
1288  // TODO clean this up as soon as we improve strategy_type
1289  template <typename CsrType>
1290  void convert_strategy_helper(CsrType* result) const
1291  {
1292  auto strat = this->get_strategy().get();
1293  std::shared_ptr<typename CsrType::strategy_type> new_strat;
1294  if (dynamic_cast<classical*>(strat)) {
1295  new_strat = std::make_shared<typename CsrType::classical>();
1296  } else if (dynamic_cast<merge_path*>(strat)) {
1297  new_strat = std::make_shared<typename CsrType::merge_path>();
1298  } else if (dynamic_cast<cusparse*>(strat)) {
1299  new_strat = std::make_shared<typename CsrType::cusparse>();
1300  } else if (dynamic_cast<sparselib*>(strat)) {
1301  new_strat = std::make_shared<typename CsrType::sparselib>();
1302  } else {
1303  auto rexec = result->get_executor();
1304  auto cuda_exec =
1305  std::dynamic_pointer_cast<const CudaExecutor>(rexec);
1306  auto hip_exec = std::dynamic_pointer_cast<const HipExecutor>(rexec);
1307  auto dpcpp_exec =
1308  std::dynamic_pointer_cast<const DpcppExecutor>(rexec);
1309  auto lb = dynamic_cast<load_balance*>(strat);
1310  if (cuda_exec) {
1311  if (lb) {
1312  new_strat =
1313  std::make_shared<typename CsrType::load_balance>(
1314  cuda_exec);
1315  } else {
1316  new_strat = std::make_shared<typename CsrType::automatical>(
1317  cuda_exec);
1318  }
1319  } else if (hip_exec) {
1320  if (lb) {
1321  new_strat =
1322  std::make_shared<typename CsrType::load_balance>(
1323  hip_exec);
1324  } else {
1325  new_strat = std::make_shared<typename CsrType::automatical>(
1326  hip_exec);
1327  }
1328  } else if (dpcpp_exec) {
1329  if (lb) {
1330  new_strat =
1331  std::make_shared<typename CsrType::load_balance>(
1332  dpcpp_exec);
1333  } else {
1334  new_strat = std::make_shared<typename CsrType::automatical>(
1335  dpcpp_exec);
1336  }
1337  } else {
1338  // Try to preserve this executor's configuration
1339  auto this_cuda_exec =
1340  std::dynamic_pointer_cast<const CudaExecutor>(
1341  this->get_executor());
1342  auto this_hip_exec =
1343  std::dynamic_pointer_cast<const HipExecutor>(
1344  this->get_executor());
1345  auto this_dpcpp_exec =
1346  std::dynamic_pointer_cast<const DpcppExecutor>(
1347  this->get_executor());
1348  if (this_cuda_exec) {
1349  if (lb) {
1350  new_strat =
1351  std::make_shared<typename CsrType::load_balance>(
1352  this_cuda_exec);
1353  } else {
1354  new_strat =
1355  std::make_shared<typename CsrType::automatical>(
1356  this_cuda_exec);
1357  }
1358  } else if (this_hip_exec) {
1359  if (lb) {
1360  new_strat =
1361  std::make_shared<typename CsrType::load_balance>(
1362  this_hip_exec);
1363  } else {
1364  new_strat =
1365  std::make_shared<typename CsrType::automatical>(
1366  this_hip_exec);
1367  }
1368  } else if (this_dpcpp_exec) {
1369  if (lb) {
1370  new_strat =
1371  std::make_shared<typename CsrType::load_balance>(
1372  this_dpcpp_exec);
1373  } else {
1374  new_strat =
1375  std::make_shared<typename CsrType::automatical>(
1376  this_dpcpp_exec);
1377  }
1378  } else {
1379  // FIXME: this changes strategies.
1380  // We had a load balance or automatical strategy from a non
1381  // HIP or Cuda executor and are moving to a non HIP or Cuda
1382  // executor.
1383  new_strat = std::make_shared<typename CsrType::classical>();
1384  }
1385  }
1386  }
1387  result->set_strategy(new_strat);
1388  }
1389 
1393  void make_srow()
1394  {
1395  srow_.resize_and_reset(strategy_->clac_size(values_.get_size()));
1396  strategy_->process(row_ptrs_, &srow_);
1397  }
1398 
1405  virtual void scale_impl(const LinOp* alpha);
1406 
1413  virtual void inv_scale_impl(const LinOp* alpha);
1414 
1415 private:
1416  std::shared_ptr<strategy_type> strategy_;
1417  array<value_type> values_;
1418  array<index_type> col_idxs_;
1419  array<index_type> row_ptrs_;
1420  array<index_type> srow_;
1421 
1422  void add_scaled_identity_impl(const LinOp* a, const LinOp* b) override;
1423 };
1424 
1425 
1426 namespace detail {
1427 
1428 
1435 template <typename ValueType, typename IndexType>
1436 void strategy_rebuild_helper(Csr<ValueType, IndexType>* result)
1437 {
1438  using load_balance = typename Csr<ValueType, IndexType>::load_balance;
1439  using automatical = typename Csr<ValueType, IndexType>::automatical;
1440  auto strategy = result->get_strategy();
1441  auto executor = result->get_executor();
1442  if (std::dynamic_pointer_cast<load_balance>(strategy)) {
1443  if (auto exec =
1444  std::dynamic_pointer_cast<const HipExecutor>(executor)) {
1445  result->set_strategy(std::make_shared<load_balance>(exec));
1446  } else if (auto exec = std::dynamic_pointer_cast<const CudaExecutor>(
1447  executor)) {
1448  result->set_strategy(std::make_shared<load_balance>(exec));
1449  }
1450  } else if (std::dynamic_pointer_cast<automatical>(strategy)) {
1451  if (auto exec =
1452  std::dynamic_pointer_cast<const HipExecutor>(executor)) {
1453  result->set_strategy(std::make_shared<automatical>(exec));
1454  } else if (auto exec = std::dynamic_pointer_cast<const CudaExecutor>(
1455  executor)) {
1456  result->set_strategy(std::make_shared<automatical>(exec));
1457  }
1458  }
1459 }
1460 
1461 
1462 } // namespace detail
1463 } // namespace matrix
1464 } // namespace gko
1465 
1466 
1467 #endif // GKO_PUBLIC_CORE_MATRIX_CSR_HPP_
gko::matrix::Csr::automatical
Definition: csr.hpp:519
gko::matrix::Csr::get_const_srow
const index_type * get_const_srow() const noexcept
Returns the starting rows.
Definition: csr.hpp:1034
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const HipExecutor > exec)
Creates a load_balance strategy with HIP executor.
Definition: csr.hpp:378
gko::matrix::Csr::operator=
Csr & operator=(const Csr &)
Copy-assigns a Csr matrix.
gko::matrix::Csr::cusparse::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:312
gko::matrix::Csr::get_col_idxs
index_type * get_col_idxs() noexcept
Returns the column indexes of the matrix.
Definition: csr.hpp:987
gko::matrix::Fbcsr
Fixed-block compressed sparse row storage matrix format.
Definition: csr.hpp:46
gko::matrix::Csr
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition: matrix.hpp:28
gko::matrix::Csr::get_const_row_ptrs
const index_type * get_const_row_ptrs() const noexcept
Returns the row pointers of the matrix.
Definition: csr.hpp:1015
gko::matrix::Csr::sparselib::sparselib
sparselib()
Creates a sparselib strategy.
Definition: csr.hpp:334
gko::LinOp
Definition: lin_op.hpp:117
gko::matrix::Csr::permute_reuse
std::pair< std::unique_ptr< Csr >, permuting_reuse_info > permute_reuse(ptr_param< const Permutation< index_type >> permutation, permute_mode mode=permute_mode::symmetric) const
Computes the operations necessary to propagate changed values from a matrix A to a permuted matrix.
gko::matrix::Dense
Dense is a matrix format which explicitly stores all values of the matrix.
Definition: dense_cache.hpp:19
gko::matrix::CsrBuilder
Definition: csr.hpp:49
gko::matrix::Csr::inverse_row_permute
std::unique_ptr< LinOp > inverse_row_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
gko::matrix::Csr::sparselib
sparselib is a strategy_type which uses the sparselib csr.
Definition: csr.hpp:329
gko::DiagonalExtractable
The diagonal of a LinOp implementing this interface can be extracted.
Definition: lin_op.hpp:743
gko::matrix::SparsityCsr
SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressi...
Definition: csr.hpp:40
gko::matrix::Csr::load_balance
load_balance is a strategy_type which uses the load balance algorithm.
Definition: csr.hpp:351
gko::matrix::Csr::scale
void scale(ptr_param< const LinOp > alpha)
Scales the matrix with a scalar.
Definition: csr.hpp:1085
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const HipExecutor > exec)
Creates an automatical strategy with HIP executor.
Definition: csr.hpp:566
gko::Transposable
Linear operators which support transposition should implement the Transposable interface.
Definition: lin_op.hpp:433
gko::matrix::Csr::column_permute
std::unique_ptr< LinOp > column_permute(const array< IndexType > *permutation_indices) const override
Returns a LinOp representing the column permutation of the Permutable object.
gko::matrix::Csr::strategy_type::get_name
std::string get_name()
Returns the name of strategy.
Definition: csr.hpp:191
gko::matrix::Csr::classical::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:259
gko::matrix::ScaledPermutation
ScaledPermutation is a matrix combining a permutation with scaling factors.
Definition: scaled_permutation.hpp:36
gko::size_type
std::size_t size_type
Integral type used for allocation quantities.
Definition: types.hpp:89
gko::matrix::Csr::strategy_type::copy
virtual std::shared_ptr< strategy_type > copy()=0
Copy a strategy.
gko::matrix::Csr::get_srow
index_type * get_srow() noexcept
Returns the starting rows.
Definition: csr.hpp:1025
gko::matrix::Csr::sparselib::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:340
gko::matrix::Csr::transpose_reuse
std::pair< std::unique_ptr< Csr >, permuting_reuse_info > transpose_reuse() const
Computes the necessary data to update a transposed matrix from its original matrix.
gko::matrix::Permutation
Permutation is a matrix format that represents a permutation matrix, i.e.
Definition: csr.hpp:52
gko::matrix::Csr::automatical::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:603
gko::matrix::Csr::permuting_reuse_info::permuting_reuse_info
permuting_reuse_info()
Creates an empty reuse info.
gko::matrix::Csr::row_permute
std::unique_ptr< LinOp > row_permute(const array< IndexType > *permutation_indices) const override
Returns a LinOp representing the row permutation of the Permutable object.
gko::matrix::Csr::classical::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:266
gko::CudaExecutor
This is the Executor subclass which represents the CUDA device.
Definition: executor.hpp:1540
gko::matrix::Csr::strategy_type::process
virtual void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow)=0
Computes srow according to row pointers.
gko::Permutable
Linear operators which support permutation should implement the Permutable interface.
Definition: lin_op.hpp:484
gko::matrix::Csr::transpose
std::unique_ptr< LinOp > transpose() const override
Returns a LinOp representing the transpose of the Transposable object.
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const DpcppExecutor > exec)
Creates a load_balance strategy with DPCPP executor.
Definition: csr.hpp:389
gko
The Ginkgo namespace.
Definition: abstract_factory.hpp:20
gko::matrix::Csr::load_balance::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:414
gko::matrix::Csr::inv_scale
void inv_scale(ptr_param< const LinOp > alpha)
Scales the matrix with the inverse of a scalar.
Definition: csr.hpp:1098
gko::matrix::Csr::extract_diagonal
std::unique_ptr< Diagonal< ValueType > > extract_diagonal() const override
Extracts the diagonal entries of the matrix into a vector.
gko::array< index_type >
gko::matrix::Csr::cusparse
cusparse is a strategy_type which uses the sparselib csr.
Definition: csr.hpp:305
gko::matrix::Csr::inverse_permute
std::unique_ptr< LinOp > inverse_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the symmetric inverse row and column permutation of the Permutable objec...
gko::matrix::Csr::get_row_ptrs
index_type * get_row_ptrs() noexcept
Returns the row pointers of the matrix.
Definition: csr.hpp:1006
gko::array::resize_and_reset
void resize_and_reset(size_type size)
Resizes the array so it is able to hold the specified number of elements.
Definition: array.hpp:622
gko::span
A span is a lightweight structure used to create sub-ranges from other ranges.
Definition: range.hpp:46
gko::dim< 2 >
gko::matrix_data
This structure is used as an intermediate data type to store a sparse matrix.
Definition: matrix_data.hpp:126
gko::matrix::Csr::load_balance::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:467
gko::matrix::Csr::merge_path
merge_path is a strategy_type which uses the merge_path algorithm.
Definition: csr.hpp:280
gko::matrix::Csr::permute
std::unique_ptr< Csr > permute(ptr_param< const Permutation< index_type >> permutation, permute_mode mode=permute_mode::symmetric) const
Creates a permuted copy of this matrix with the given permutation .
gko::index_set
An index set class represents an ordered set of intervals.
Definition: index_set.hpp:56
gko::matrix::Csr::automatical::automatical
automatical()
Creates an automatical strategy.
Definition: csr.hpp:547
gko::matrix::Csr::merge_path::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:293
gko::matrix::Csr::load_balance::load_balance
load_balance(int64_t nwarps, int warp_size=32, bool cuda_strategy=true, std::string strategy_name="none")
Creates a load_balance strategy with specified parameters.
Definition: csr.hpp:404
gko::matrix::Diagonal
This class is a utility which efficiently implements the diagonal matrix (a linear operator which sca...
Definition: lin_op.hpp:31
gko::matrix::Csr::strategy_type::clac_size
virtual int64_t clac_size(const int64_t nnz)=0
Computes the srow size according to the number of nonzeros.
gko::matrix::Csr::load_balance::load_balance
load_balance(std::shared_ptr< const CudaExecutor > exec)
Creates a load_balance strategy with CUDA executor.
Definition: csr.hpp:369
gko::ptr_param
This class is used for function parameters in the place of raw pointers.
Definition: utils_helper.hpp:41
gko::array::get_data
value_type * get_data() noexcept
Returns a pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:673
gko::ReadableFromMatrixData
A LinOp implementing this interface can read its data from a matrix_data structure.
Definition: lin_op.hpp:605
gko::OmpExecutor
This is the Executor subclass which represents the OpenMP device (typically CPU).
Definition: executor.hpp:1386
gko::matrix::Csr::conj_transpose
std::unique_ptr< LinOp > conj_transpose() const override
Returns a LinOp representing the conjugate transpose of the Transposable object.
gko::WritableToMatrixData
A LinOp implementing this interface can write its data to a matrix_data structure.
Definition: lin_op.hpp:660
gko::matrix::permute_mode::symmetric
The rows and columns will be permuted.
gko::matrix::Csr::sparselib::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:336
gko::matrix::Csr::cusparse::cusparse
cusparse()
Creates a cusparse strategy.
Definition: csr.hpp:310
gko::matrix::Csr::cusparse::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:316
gko::matrix::Csr::merge_path::merge_path
merge_path()
Creates a merge_path strategy.
Definition: csr.hpp:285
gko::matrix::Csr::get_const_values
const value_type * get_const_values() const noexcept
Returns the values of the matrix.
Definition: csr.hpp:965
gko::stop::mode
mode
The mode for the residual norm criterion.
Definition: residual_norm.hpp:38
gko::matrix::Csr::load_balance::load_balance
load_balance()
Creates a load_balance strategy.
Definition: csr.hpp:359
gko::array::get_executor
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor associated with the array.
Definition: array.hpp:689
gko::matrix::Csr::get_num_stored_elements
size_type get_num_stored_elements() const noexcept
Returns the number of elements explicitly stored in the matrix.
Definition: csr.hpp:1054
gko::matrix::Csr::create_submatrix
std::unique_ptr< Csr< ValueType, IndexType > > create_submatrix(const index_set< IndexType > &row_index_set, const index_set< IndexType > &column_index_set) const
Creates a submatrix from this Csr matrix given row and column index_set objects.
gko::ScaledIdentityAddable
Adds the operation M <- a I + b M for matrix M, identity operator I and scalars a and b,...
Definition: lin_op.hpp:818
gko::matrix::Csr::permuting_reuse_info
A struct describing a transformation of the matrix that reorders the values of the matrix into the tr...
Definition: csr.hpp:764
gko::matrix::Csr::load_balance::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:506
gko::matrix::Csr::classical::classical
classical()
Creates a classical strategy.
Definition: csr.hpp:235
gko::matrix::Csr::strategy_type::strategy_type
strategy_type(std::string name)
Creates a strategy_type.
Definition: csr.hpp:182
gko::matrix::Csr::sort_by_column_index
void sort_by_column_index()
Sorts all (value, col_idx) pairs in each row by column index.
gko::matrix::Csr::merge_path::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:287
gko::next_precision
next_precision_base< T > next_precision
Obtains the next type in the singly-linked precision list with half.
Definition: math.hpp:445
gko::matrix::Csr::create_const
static std::unique_ptr< const Csr > create_const(std::shared_ptr< const Executor > exec, const dim< 2 > &size, gko::detail::const_array_view< ValueType > &&values, gko::detail::const_array_view< IndexType > &&col_idxs, gko::detail::const_array_view< IndexType > &&row_ptrs, std::shared_ptr< strategy_type > strategy=nullptr)
Creates a constant (immutable) Csr matrix from a set of constant arrays.
gko::matrix::Csr::automatical::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:684
gko::matrix::Csr::classical
classical is a strategy_type which uses the same number of threads on each row.
Definition: csr.hpp:230
gko::matrix::Csr::get_strategy
std::shared_ptr< strategy_type > get_strategy() const noexcept
Returns the strategy.
Definition: csr.hpp:1063
gko::matrix::Csr::permuting_reuse_info::update_values
void update_values(ptr_param< const Csr > input, ptr_param< Csr > output) const
Propagates the values from an input matrix to the transformed matrix.
gko::matrix::Csr::set_strategy
void set_strategy(std::shared_ptr< strategy_type > strategy)
Set the strategy.
Definition: csr.hpp:1073
gko::matrix::Ell
ELL is a matrix format where stride with explicit zeros is used such that all rows have the same numb...
Definition: csr.hpp:31
gko::matrix::Csr::create_const_value_view
std::unique_ptr< const Dense< ValueType > > create_const_value_view() const
Creates a const Dense view of the value array of this matrix as a column vector of dimensions nnz x 1...
gko::ConvertibleTo
ConvertibleTo interface is used to mark that the implementer can be converted to the object of Result...
Definition: polymorphic_object.hpp:479
gko::matrix::Csr::compute_absolute
std::unique_ptr< absolute_type > compute_absolute() const override
Gets the AbsoluteLinOp.
gko::matrix::Csr::strategy_type
strategy_type is to decide how to set the csr algorithm.
Definition: csr.hpp:173
gko::make_temporary_clone
detail::temporary_clone< detail::pointee< Ptr > > make_temporary_clone(std::shared_ptr< const Executor > exec, Ptr &&ptr)
Creates a temporary_clone.
Definition: temporary_clone.hpp:208
gko::Executor
The first step in using the Ginkgo library consists of creating an executor.
Definition: executor.hpp:615
gko::matrix::Hybrid
HYBRID is a matrix format which splits the matrix into ELLPACK and COO format.
Definition: coo.hpp:32
gko::array::get_const_data
const value_type * get_const_data() const noexcept
Returns a constant pointer to the block of memory used to store the elements of the array.
Definition: array.hpp:682
gko::matrix::Csr::write
void write(mat_data &data) const override
Writes a matrix to a matrix_data structure.
gko::matrix::permute_mode
permute_mode
Specifies how a permutation will be applied to a matrix.
Definition: permutation.hpp:42
gko::matrix::Sellp
SELL-P is a matrix format similar to ELL format.
Definition: csr.hpp:37
gko::min
constexpr T min(const T &x, const T &y)
Returns the smaller of the arguments.
Definition: math.hpp:719
gko::matrix::Csr::cusparse::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:318
gko::matrix::Csr::get_const_col_idxs
const index_type * get_const_col_idxs() const noexcept
Returns the column indexes of the matrix.
Definition: csr.hpp:996
gko::ceildiv
constexpr int64 ceildiv(int64 num, int64 den)
Performs integer division with rounding up.
Definition: math.hpp:590
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const DpcppExecutor > exec)
Creates an automatical strategy with Dpcpp executor.
Definition: csr.hpp:577
gko::matrix::Csr::merge_path::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:291
gko::EnableAbsoluteComputation
The EnableAbsoluteComputation mixin provides the default implementations of compute_absolute_linop an...
Definition: lin_op.hpp:794
gko::matrix::Csr::inverse_column_permute
std::unique_ptr< LinOp > inverse_column_permute(const array< IndexType > *inverse_permutation_indices) const override
Returns a LinOp representing the row permutation of the inverse permuted object.
gko::matrix::Csr::Csr
Csr(const Csr &)
Copy-constructs a Csr matrix.
gko::matrix::Csr::automatical::automatical
automatical(std::shared_ptr< const CudaExecutor > exec)
Creates an automatical strategy with CUDA executor.
Definition: csr.hpp:557
gko::PolymorphicObject::get_executor
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor of the object.
Definition: polymorphic_object.hpp:243
gko::array::get_size
size_type get_size() const noexcept
Returns the number of elements in the array.
Definition: array.hpp:656
gko::matrix::Csr::automatical::clac_size
int64_t clac_size(const int64_t nnz) override
Computes the srow size according to the number of nonzeros.
Definition: csr.hpp:672
gko::matrix::Csr::automatical::automatical
automatical(int64_t nwarps, int warp_size=32, bool cuda_strategy=true, std::string strategy_name="none")
Creates an automatical strategy with specified parameters.
Definition: csr.hpp:592
gko::matrix::Csr::classical::process
void process(const array< index_type > &mtx_row_ptrs, array< index_type > *mtx_srow) override
Computes srow according to row pointers.
Definition: csr.hpp:237
gko::remove_complex
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition: math.hpp:260
gko::matrix::Csr::compute_absolute_inplace
void compute_absolute_inplace() override
Compute absolute inplace on each element.
gko::matrix::Csr::scale_permute
std::unique_ptr< Csr > scale_permute(ptr_param< const ScaledPermutation< value_type, index_type >> permutation, permute_mode=permute_mode::symmetric) const
Creates a scaled and permuted copy of this matrix.
gko::device_matrix_data
This type is a device-side equivalent to matrix_data.
Definition: device_matrix_data.hpp:36
gko::matrix::Csr::read
void read(const mat_data &data) override
Reads a matrix from a matrix_data structure.
gko::matrix::Csr::create
static std::unique_ptr< Csr > create(std::shared_ptr< const Executor > exec, std::shared_ptr< strategy_type > strategy)
Creates an uninitialized CSR matrix of the specified size.
gko::EnableLinOp
The EnableLinOp mixin can be used to provide sensible default implementations of the majority of the ...
Definition: lin_op.hpp:877
gko::matrix::Csr::create_value_view
std::unique_ptr< Dense< ValueType > > create_value_view()
Creates a Dense view of the value array of this matrix as a column vector of dimensions nnz x 1.
gko::matrix::Csr::sparselib::copy
std::shared_ptr< strategy_type > copy() override
Copy a strategy.
Definition: csr.hpp:342
gko::matrix::Csr::get_values
value_type * get_values() noexcept
Returns the values of the matrix.
Definition: csr.hpp:956
gko::matrix::Csr::get_num_srow_elements
size_type get_num_srow_elements() const noexcept
Returns the number of the srow stored elements (involved warps)
Definition: csr.hpp:1044
gko::LinOp::LinOp
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
gko::to_complex
typename detail::to_complex_s< T >::type to_complex
Obtain the type which adds the complex of complex/scalar type or the template parameter of class by a...
Definition: math.hpp:279
gko::EnablePolymorphicObject
This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a ne...
Definition: polymorphic_object.hpp:667
gko::matrix::Coo
COO stores a matrix in the coordinate matrix format.
Definition: coo.hpp:50