►Cgko::AbsoluteComputable | The AbsoluteComputable is an interface that allows to get the component wise absolute of a LinOp |
►Cgko::EnableAbsoluteComputation< remove_complex< Coo< ValueType, IndexType > > > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
►Cgko::EnableAbsoluteComputation< remove_complex< Csr< ValueType, IndexType > > > | |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::EnableAbsoluteComputation< remove_complex< Dense< ValueType > > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::EnableAbsoluteComputation< remove_complex< Diagonal< ValueType > > > | |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::EnableAbsoluteComputation< remove_complex< Ell< ValueType, IndexType > > > | |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
►Cgko::EnableAbsoluteComputation< remove_complex< Fbcsr< ValueType, IndexType > > > | |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
►Cgko::EnableAbsoluteComputation< remove_complex< Hybrid< ValueType, IndexType > > > | |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
►Cgko::EnableAbsoluteComputation< remove_complex< Sellp< ValueType, IndexType > > > | |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
►Cgko::EnableAbsoluteComputation< remove_complex< Vector< ValueType > > > | |
Cgko::experimental::distributed::Vector< ValueType > | Vector is a format which explicitly stores (multiple) distributed column vectors in a dense storage format |
►Cgko::EnableAbsoluteComputation< AbsoluteLinOp > | The EnableAbsoluteComputation mixin provides the default implementations of compute_absolute_linop and the absolute interface |
Cgko::matrix::Dense< value_type > | |
►Cgko::Allocator | Provides generic allocation and deallocation functionality to be used by an Executor |
►Cgko::CpuAllocatorBase | Implement this interface to provide an allocator for OmpExecutor or ReferenceExecutor |
Cgko::CpuAllocator | Allocator using new/delete |
Cgko::CudaHostAllocator | |
Cgko::CudaUnifiedAllocator | |
Cgko::HipHostAllocator | |
Cgko::HipUnifiedAllocator | |
►Cgko::CudaAllocatorBase | Implement this interface to provide an allocator for CudaExecutor |
Cgko::CudaAllocator | Allocator using cudaMalloc |
Cgko::CudaAsyncAllocator | |
Cgko::CudaHostAllocator | |
Cgko::CudaUnifiedAllocator | |
►Cgko::HipAllocatorBase | Implement this interface to provide an allocator for HipExecutor |
Cgko::HipAllocator | |
Cgko::HipAsyncAllocator | |
Cgko::HipHostAllocator | |
Cgko::HipUnifiedAllocator | |
Cgko::amd_device | Amd_device handles the number of executor on Amd devices and have the corresponding recursive_mutex |
►Cgko::solver::ApplyWithInitialGuess | ApplyWithInitialGuess provides a way to give the input guess for apply function |
►Cgko::solver::EnableApplyWithInitialGuess< Ir< ValueType > > | |
Cgko::solver::Ir< ValueType > | Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the error of the current solution via the current residual |
►Cgko::solver::EnableApplyWithInitialGuess< Multigrid > | |
Cgko::solver::Multigrid | Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level, of the problem |
Cgko::solver::EnableApplyWithInitialGuess< DerivedType > | EnableApplyWithInitialGuess providing default operation for ApplyWithInitialGuess with correct validation and log |
Cgko::array< ValueType > | An array is a container which encapsulates fixed-sized arrays, stored on the Executor tied to the array |
Cgko::array< bool > | |
Cgko::array< char > | |
Cgko::array< comm_index_type > | |
Cgko::array< gko::precision_reduction > | |
Cgko::array< gko::stopping_status > | |
Cgko::array< global_index_type > | |
Cgko::array< GlobalIndexType > | |
Cgko::array< index_type > | |
Cgko::array< IndexType > | |
Cgko::array< int64 > | |
Cgko::array< local_index_type > | |
Cgko::array< LocalIndexType > | |
Cgko::array< real_type > | |
Cgko::array< remove_complex< value_type > > | |
Cgko::array< size_type > | |
Cgko::array< T > | |
Cgko::array< unsigned char > | |
Cgko::array< value_type > | |
Cgko::device_matrix_data< ValueType, IndexType >::arrays | Stores the internal arrays of a device_matrix_data object |
Cgko::batch_dim< Dimensionality, DimensionType > | A type representing the dimensions of a multidimensional batch object |
Cgko::batch_dim< 2 > | |
►CBatchLinOp | |
►Cgko::EnableAbstractPolymorphicObject< Bicgstab< ValueType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Bicgstab< ValueType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Bicgstab< ValueType >, BatchLinOp > | |
►Cgko::batch::solver::EnableBatchSolver< Bicgstab< ValueType >, ValueType > | |
Cgko::batch::solver::Bicgstab< ValueType > | BiCGSTAB or the Bi-Conjugate Gradient-Stabilized is a Krylov subspace solver |
►Cgko::EnableAbstractPolymorphicObject< Cg< ValueType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Cg< ValueType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Cg< ValueType >, BatchLinOp > | |
►Cgko::batch::solver::EnableBatchSolver< Cg< ValueType >, ValueType > | |
Cgko::batch::solver::Cg< ValueType > | Cg or the Conjugate Gradient is a Krylov subspace solver |
►Cgko::EnableAbstractPolymorphicObject< Csr< ValueType, IndexType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Csr< ValueType, IndexType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Csr< ValueType, IndexType > > | |
Cgko::batch::matrix::Csr< ValueType, IndexType > | Csr is a general sparse matrix format that stores the column indices for each nonzero entry and a cumulative sum of the number of nonzeros in each row |
►Cgko::EnableAbstractPolymorphicObject< Dense< ValueType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Dense< ValueType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Dense< ValueType > > | |
Cgko::batch::matrix::Dense< ValueType > | Dense is a batch matrix format which explicitly stores all values of the matrix in each of the batches |
►Cgko::EnableAbstractPolymorphicObject< Ell< ValueType, IndexType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Ell< ValueType, IndexType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Ell< ValueType, IndexType > > | |
Cgko::batch::matrix::Ell< ValueType, IndexType > | Ell is a sparse matrix format that stores the same number of nonzeros in each row, enabling coalesced accesses |
►Cgko::EnableAbstractPolymorphicObject< Identity< ValueType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Identity< ValueType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Identity< ValueType > > | |
Cgko::batch::matrix::Identity< ValueType > | The batch Identity matrix, which represents a batch of Identity matrices |
►Cgko::EnableAbstractPolymorphicObject< Jacobi< ValueType, IndexType >, BatchLinOp > | |
►Cgko::EnablePolymorphicObject< Jacobi< ValueType, IndexType >, BatchLinOp > | |
►Cgko::batch::EnableBatchLinOp< Jacobi< ValueType, IndexType > > | |
Cgko::batch::preconditioner::Jacobi< ValueType, IndexType > | A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal blocks (stored in a dense row major fashion) of the source operator |
►Cgko::batch::solver::BatchSolver | The BatchSolver is a base class for all batched solvers and provides the common getters and setter for these batched solver classes |
Cgko::batch::solver::EnableBatchSolver< Bicgstab< ValueType >, ValueType > | |
Cgko::batch::solver::EnableBatchSolver< Cg< ValueType >, ValueType > | |
Cgko::batch::solver::EnableBatchSolver< ConcreteSolver, ValueType, PolymorphicBase > | This mixin provides apply and common iterative solver functionality to all the batched solvers |
Cgko::preconditioner::block_interleaved_storage_scheme< IndexType > | Defines the parameters of the interleaved block storage scheme used by block-Jacobi blocks |
Cgko::preconditioner::block_interleaved_storage_scheme< index_type > | |
Cgko::experimental::mpi::communicator | A thin wrapper of MPI_Comm that supports most MPI calls |
Cgko::experimental::mpi::contiguous_type | A move-only wrapper for a contiguous MPI_Datatype |
►Cgko::ConvertibleTo< ResultType > | ConvertibleTo interface is used to mark that the implementer can be converted to the object of ResultType |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::EnablePolymorphicAssignment< ConcreteType, ResultType > | This mixin is used to enable a default PolymorphicObject::copy_from() implementation for objects that have implemented conversions between them |
►Cgko::ConvertibleTo< Amd< IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Amd< IndexType > > | |
Cgko::experimental::reorder::Amd< IndexType > | Computes a Approximate Minimum Degree (AMD) reordering of an input matrix |
►Cgko::ConvertibleTo< Bicg< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Bicg< ValueType > > | |
►Cgko::EnableLinOp< Bicg< ValueType > > | |
Cgko::solver::Bicg< ValueType > | BICG or the Biconjugate gradient method is a Krylov subspace solver |
►Cgko::ConvertibleTo< Bicgstab< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Bicgstab< ValueType > > | |
Cgko::batch::EnableBatchLinOp< Bicgstab< ValueType >, BatchLinOp > | |
►Cgko::EnableLinOp< Bicgstab< ValueType > > | |
Cgko::solver::Bicgstab< ValueType > | BiCGSTAB or the Bi-Conjugate Gradient-Stabilized is a Krylov subspace solver |
►Cgko::ConvertibleTo< BlockOperator > | |
►Cgko::EnablePolymorphicAssignment< BlockOperator > | |
►Cgko::EnableLinOp< BlockOperator > | |
Cgko::BlockOperator | A BlockOperator represents a linear operator that is partitioned into multiple blocks |
►Cgko::ConvertibleTo< CbGmres< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< CbGmres< ValueType > > | |
►Cgko::EnableLinOp< CbGmres< ValueType > > | |
Cgko::solver::CbGmres< ValueType > | CB-GMRES or the compressed basis generalized minimal residual method is an iterative type Krylov subspace method which is suitable for nonsymmetric linear systems |
►Cgko::ConvertibleTo< Cg< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Cg< ValueType > > | |
Cgko::batch::EnableBatchLinOp< Cg< ValueType >, BatchLinOp > | |
►Cgko::EnableLinOp< Cg< ValueType > > | |
Cgko::solver::Cg< ValueType > | CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
►Cgko::ConvertibleTo< Cgs< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Cgs< ValueType > > | |
►Cgko::EnableLinOp< Cgs< ValueType > > | |
Cgko::solver::Cgs< ValueType > | CGS or the conjugate gradient square method is an iterative type Krylov subspace method which is suitable for general systems |
►Cgko::ConvertibleTo< Cholesky< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Cholesky< ValueType, IndexType > > | |
Cgko::experimental::factorization::Cholesky< ValueType, IndexType > | Computes a Cholesky factorization of a symmetric, positive-definite sparse matrix |
►Cgko::ConvertibleTo< Combination< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Combination< ValueType > > | |
►Cgko::EnableLinOp< Combination< ValueType > > | |
Cgko::Combination< ValueType > | The Combination class can be used to construct a linear combination of multiple linear operators c1 * op1 + c2 * op2 + .. |
►Cgko::ConvertibleTo< Composition< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Composition< ValueType > > | |
►Cgko::EnableLinOp< Composition< ValueType > > | |
►Cgko::Composition< ValueType > | The Composition class can be used to compose linear operators op1, op2, ..., opn and obtain the operator op1 * op2 * .. |
Cgko::factorization::Ic< ValueType, IndexType > | Represents an incomplete Cholesky factorization (IC(0)) of a sparse matrix |
Cgko::factorization::Ilu< ValueType, IndexType > | Represents an incomplete LU factorization – ILU(0) – of a sparse matrix |
Cgko::factorization::ParIc< ValueType, IndexType > | ParIC is an incomplete Cholesky factorization which is computed in parallel |
Cgko::factorization::ParIct< ValueType, IndexType > | ParICT is an incomplete threshold-based Cholesky factorization which is computed in parallel |
Cgko::factorization::ParIlu< ValueType, IndexType > | ParILU is an incomplete LU factorization which is computed in parallel |
Cgko::factorization::ParIlut< ValueType, IndexType > | ParILUT is an incomplete threshold-based LU factorization which is computed in parallel |
►Cgko::ConvertibleTo< ConcreteBatchLinOp > | |
►Cgko::EnablePolymorphicAssignment< ConcreteBatchLinOp > | |
Cgko::batch::EnableBatchLinOp< ConcreteBatchLinOp, PolymorphicBase > | The EnableBatchLinOp mixin can be used to provide sensible default implementations of the majority of the BatchLinOp and PolymorphicObject interface |
►Cgko::ConvertibleTo< ConcreteFactory > | |
►Cgko::EnablePolymorphicAssignment< ConcreteFactory > | |
►Cgko::EnableDefaultFactory< ConcreteFactory, ProductType, ParametersType, PolymorphicBase > | This mixin provides a default implementation of a concrete factory |
Cgko::batch::preconditioner::Jacobi< ValueType, IndexType >::Factory | |
Cgko::batch::solver::Bicgstab< ValueType >::Factory | |
Cgko::batch::solver::Cg< ValueType >::Factory | |
Cgko::experimental::distributed::preconditioner::Schwarz< ValueType, LocalIndexType, GlobalIndexType >::Factory | |
Cgko::experimental::reorder::ScaledReordered< ValueType, IndexType >::Factory | |
Cgko::experimental::solver::Direct< ValueType, IndexType >::Factory | |
Cgko::factorization::Ic< ValueType, IndexType >::Factory | |
Cgko::factorization::Ilu< ValueType, IndexType >::Factory | |
Cgko::factorization::ParIc< ValueType, IndexType >::Factory | |
Cgko::factorization::ParIct< ValueType, IndexType >::Factory | |
Cgko::factorization::ParIlu< ValueType, IndexType >::Factory | |
Cgko::factorization::ParIlut< ValueType, IndexType >::Factory | |
Cgko::multigrid::FixedCoarsening< ValueType, IndexType >::Factory | |
Cgko::multigrid::Pgm< ValueType, IndexType >::Factory | |
Cgko::preconditioner::Ic< LSolverType, IndexType >::Factory | |
Cgko::preconditioner::Ilu< LSolverType, USolverType, ReverseApply, IndexType >::Factory | |
Cgko::preconditioner::Isai< IsaiType, ValueType, IndexType >::Factory | |
Cgko::preconditioner::Jacobi< ValueType, IndexType >::Factory | |
Cgko::reorder::Rcm< ValueType, IndexType >::Factory | |
Cgko::solver::Bicg< ValueType >::Factory | |
Cgko::solver::Bicgstab< ValueType >::Factory | |
Cgko::solver::CbGmres< ValueType >::Factory | |
Cgko::solver::Cg< ValueType >::Factory | |
Cgko::solver::Cgs< ValueType >::Factory | |
Cgko::solver::Fcg< ValueType >::Factory | |
Cgko::solver::Gcr< ValueType >::Factory | |
Cgko::solver::Gmres< ValueType >::Factory | |
Cgko::solver::Idr< ValueType >::Factory | |
Cgko::solver::Ir< ValueType >::Factory | |
Cgko::solver::LowerTrs< ValueType, IndexType >::Factory | |
Cgko::solver::Multigrid::Factory | |
Cgko::solver::UpperTrs< ValueType, IndexType >::Factory | |
Cgko::stop::AbsoluteResidualNorm< ValueType >::Factory | |
Cgko::stop::Combined::Factory | |
Cgko::stop::ImplicitResidualNorm< ValueType >::Factory | |
Cgko::stop::Iteration::Factory | |
Cgko::stop::RelativeResidualNorm< ValueType >::Factory | |
Cgko::stop::ResidualNorm< ValueType >::Factory | |
Cgko::stop::ResidualNormReduction< ValueType >::Factory | |
Cgko::stop::Time::Factory | |
►Cgko::ConvertibleTo< ConcreteLinOp > | |
►Cgko::EnablePolymorphicAssignment< ConcreteLinOp > | |
►Cgko::EnableLinOp< ConcreteLinOp, PolymorphicBase > | The EnableLinOp mixin can be used to provide sensible default implementations of the majority of the LinOp and PolymorphicObject interface |
Cgko::matrix::Dense< value_type > | |
Cgko::solver::Multigrid | Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level, of the problem |
►Cgko::ConvertibleTo< ConcreteSolver > | |
►Cgko::EnablePolymorphicAssignment< ConcreteSolver > | |
►Cgko::batch::EnableBatchLinOp< ConcreteSolver, PolymorphicBase > | |
Cgko::batch::solver::EnableBatchSolver< ConcreteSolver, ValueType, PolymorphicBase > | This mixin provides apply and common iterative solver functionality to all the batched solvers |
►Cgko::ConvertibleTo< Coo< next_precision< ValueType >, IndexType > > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
►Cgko::ConvertibleTo< Coo< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Coo< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Coo< ValueType, IndexType > > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Coo< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Coo< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Csr< next_precision< ValueType >, IndexType > > | |
Cgko::batch::matrix::Csr< ValueType, IndexType > | Csr is a general sparse matrix format that stores the column indices for each nonzero entry and a cumulative sum of the number of nonzeros in each row |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Csr< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Csr< ValueType, IndexType > > | |
Cgko::batch::EnableBatchLinOp< Csr< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Csr< ValueType, IndexType > > | |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Csr< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::ConvertibleTo< Csr< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::ConvertibleTo< Dense< next_precision< ValueType > > > | |
Cgko::batch::matrix::Dense< ValueType > | Dense is a batch matrix format which explicitly stores all values of the matrix in each of the batches |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Dense< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Dense< ValueType > > | |
Cgko::batch::EnableBatchLinOp< Dense< ValueType > > | |
►Cgko::EnableLinOp< Dense< ValueType > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Diagonal< next_precision< ValueType > > > | |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::ConvertibleTo< Diagonal< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Diagonal< ValueType > > | |
►Cgko::EnableLinOp< Diagonal< ValueType > > | |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::ConvertibleTo< Direct< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Direct< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Direct< ValueType, IndexType > > | |
Cgko::experimental::solver::Direct< ValueType, IndexType > | A direct solver based on a factorization into lower and upper triangular factors (with an optional diagonal scaling) |
►Cgko::ConvertibleTo< Ell< next_precision< ValueType >, IndexType > > | |
Cgko::batch::matrix::Ell< ValueType, IndexType > | Ell is a sparse matrix format that stores the same number of nonzeros in each row, enabling coalesced accesses |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
►Cgko::ConvertibleTo< Ell< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Ell< ValueType, IndexType > > | |
Cgko::batch::EnableBatchLinOp< Ell< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Ell< ValueType, IndexType > > | |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Ell< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Ell< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Factorization< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Factorization< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Factorization< ValueType, IndexType > > | |
Cgko::experimental::factorization::Factorization< ValueType, IndexType > | Represents a generic factorization consisting of two triangular factors (upper and lower) and an optional diagonal scaling matrix |
►Cgko::ConvertibleTo< Fbcsr< next_precision< ValueType >, IndexType > > | |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
►Cgko::ConvertibleTo< Fbcsr< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Fbcsr< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Fbcsr< ValueType, IndexType > > | |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Fbcsr< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Fbcsr< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Fcg< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Fcg< ValueType > > | |
►Cgko::EnableLinOp< Fcg< ValueType > > | |
Cgko::solver::Fcg< ValueType > | FCG or the flexible conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
►Cgko::ConvertibleTo< Fft > | |
►Cgko::EnablePolymorphicAssignment< Fft > | |
►Cgko::EnableLinOp< Fft > | |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
►Cgko::ConvertibleTo< Fft2 > | |
►Cgko::EnablePolymorphicAssignment< Fft2 > | |
►Cgko::EnableLinOp< Fft2 > | |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
►Cgko::ConvertibleTo< Fft3 > | |
►Cgko::EnablePolymorphicAssignment< Fft3 > | |
►Cgko::EnableLinOp< Fft3 > | |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
►Cgko::ConvertibleTo< FixedCoarsening< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< FixedCoarsening< ValueType, IndexType > > | |
►Cgko::EnableLinOp< FixedCoarsening< ValueType, IndexType > > | |
Cgko::multigrid::FixedCoarsening< ValueType, IndexType > | FixedCoarsening is a very simple coarse grid generation algorithm |
►Cgko::ConvertibleTo< GaussSeidel< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< GaussSeidel< ValueType, IndexType > > | |
Cgko::preconditioner::GaussSeidel< ValueType, IndexType > | This class generates the Gauss-Seidel preconditioner |
►Cgko::ConvertibleTo< Gcr< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Gcr< ValueType > > | |
►Cgko::EnableLinOp< Gcr< ValueType > > | |
Cgko::solver::Gcr< ValueType > | GCR or the generalized conjugate residual method is an iterative type Krylov subspace method similar to GMRES which is suitable for nonsymmetric linear systems |
►Cgko::ConvertibleTo< Gmres< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Gmres< ValueType > > | |
►Cgko::EnableLinOp< Gmres< ValueType > > | |
Cgko::solver::Gmres< ValueType > | GMRES or the generalized minimal residual method is an iterative type Krylov subspace method which is suitable for nonsymmetric linear systems |
►Cgko::ConvertibleTo< Hybrid< next_precision< ValueType >, IndexType > > | |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
►Cgko::ConvertibleTo< Hybrid< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Hybrid< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Hybrid< ValueType, IndexType > > | |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Hybrid< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Hybrid< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Ic< LSolverType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Ic< LSolverType, IndexType > > | |
►Cgko::EnableLinOp< Ic< LSolverType, IndexType > > | |
Cgko::preconditioner::Ic< LSolverType, IndexType > | The Incomplete Cholesky (IC) preconditioner solves the equation for a given lower triangular matrix L and the right hand side b (can contain multiple right hand sides) |
►Cgko::ConvertibleTo< Identity< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Identity< ValueType > > | |
Cgko::batch::EnableBatchLinOp< Identity< ValueType > > | |
►Cgko::EnableLinOp< Identity< ValueType > > | |
Cgko::matrix::Identity< ValueType > | This class is a utility which efficiently implements the identity matrix (a linear operator which maps each vector to itself) |
►Cgko::ConvertibleTo< Idr< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Idr< ValueType > > | |
►Cgko::EnableLinOp< Idr< ValueType > > | |
Cgko::solver::Idr< ValueType > | IDR(s) is an efficient method for solving large nonsymmetric systems of linear equations |
►Cgko::ConvertibleTo< Ilu< LSolverType, USolverType, ReverseApply, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Ilu< LSolverType, USolverType, ReverseApply, IndexType > > | |
►Cgko::EnableLinOp< Ilu< LSolverType, USolverType, ReverseApply, IndexType > > | |
Cgko::preconditioner::Ilu< LSolverType, USolverType, ReverseApply, IndexType > | The Incomplete LU (ILU) preconditioner solves the equation for a given lower triangular matrix L, an upper triangular matrix U and the right hand side b (can contain multiple right hand sides) |
►Cgko::ConvertibleTo< Ir< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Ir< ValueType > > | |
►Cgko::EnableLinOp< Ir< ValueType > > | |
Cgko::solver::Ir< ValueType > | Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the error of the current solution via the current residual |
►Cgko::ConvertibleTo< Isai< IsaiType, ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Isai< IsaiType, ValueType, IndexType > > | |
►Cgko::EnableLinOp< Isai< IsaiType, ValueType, IndexType > > | |
Cgko::preconditioner::Isai< IsaiType, ValueType, IndexType > | The Incomplete Sparse Approximate Inverse (ISAI) Preconditioner generates an approximate inverse matrix for a given square matrix A, lower triangular matrix L, upper triangular matrix U or symmetric positive (spd) matrix B |
►Cgko::ConvertibleTo< Jacobi< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Jacobi< ValueType, IndexType > > | |
Cgko::batch::EnableBatchLinOp< Jacobi< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Jacobi< ValueType, IndexType > > | |
Cgko::preconditioner::Jacobi< ValueType, IndexType > | A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal blocks of the source operator |
►Cgko::ConvertibleTo< LowerTrs< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< LowerTrs< ValueType, IndexType > > | |
►Cgko::EnableLinOp< LowerTrs< ValueType, IndexType > > | |
Cgko::solver::LowerTrs< ValueType, IndexType > | LowerTrs is the triangular solver which solves the system L x = b, when L is a lower triangular matrix |
►Cgko::ConvertibleTo< Lu< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Lu< ValueType, IndexType > > | |
Cgko::experimental::factorization::Lu< ValueType, IndexType > | Computes an LU factorization of a sparse matrix |
►Cgko::ConvertibleTo< matrix::Dense< ValueType > > | |
Cgko::preconditioner::Jacobi< ValueType, IndexType > | A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal blocks of the source operator |
►Cgko::ConvertibleTo< Matrix< next_precision_base< ValueType >, LocalIndexType, GlobalIndexType > > | |
Cgko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType > | The Matrix class defines a (MPI-)distributed matrix |
►Cgko::ConvertibleTo< Matrix< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnablePolymorphicAssignment< Matrix< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnableLinOp< Matrix< ValueType, LocalIndexType, GlobalIndexType > > | |
Cgko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType > | The Matrix class defines a (MPI-)distributed matrix |
►Cgko::ConvertibleTo< Mc64< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Mc64< ValueType, IndexType > > | |
Cgko::experimental::reorder::Mc64< ValueType, IndexType > | MC64 is an algorithm for permuting large entries to the diagonal of a sparse matrix |
►Cgko::ConvertibleTo< Multigrid > | |
►Cgko::EnablePolymorphicAssignment< Multigrid > | |
Cgko::EnableLinOp< Multigrid > | |
►Cgko::ConvertibleTo< MultiVector< next_precision< ValueType > > > | |
Cgko::batch::MultiVector< ValueType > | MultiVector stores multiple vectors in a batched fashion and is useful for batched operations |
►Cgko::ConvertibleTo< MultiVector< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< MultiVector< ValueType > > | |
Cgko::batch::MultiVector< ValueType > | MultiVector stores multiple vectors in a batched fashion and is useful for batched operations |
►Cgko::ConvertibleTo< Partition< LocalIndexType, GlobalIndexType > > | |
►Cgko::EnablePolymorphicAssignment< Partition< LocalIndexType, GlobalIndexType > > | |
Cgko::experimental::distributed::Partition< LocalIndexType, GlobalIndexType > | Represents a partition of a range of indices [0, size) into a disjoint set of parts |
►Cgko::ConvertibleTo< Permutation< IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Permutation< IndexType > > | |
►Cgko::EnableLinOp< Permutation< IndexType > > | |
Cgko::matrix::Permutation< IndexType > | Permutation is a matrix format that represents a permutation matrix, i.e |
►Cgko::ConvertibleTo< Perturbation< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Perturbation< ValueType > > | |
►Cgko::EnableLinOp< Perturbation< ValueType > > | |
Cgko::Perturbation< ValueType > | The Perturbation class can be used to construct a LinOp to represent the operation (identity + scalar * basis * projector) |
►Cgko::ConvertibleTo< Pgm< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Pgm< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Pgm< ValueType, IndexType > > | |
Cgko::multigrid::Pgm< ValueType, IndexType > | Parallel graph match (Pgm) is the aggregate method introduced in the paper M |
►Cgko::ConvertibleTo< Rcm< IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Rcm< IndexType > > | |
Cgko::experimental::reorder::Rcm< IndexType > | Rcm (Reverse Cuthill-McKee) is a reordering algorithm minimizing the bandwidth of a matrix |
►Cgko::ConvertibleTo< Rcm< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Rcm< ValueType, IndexType > > | |
Cgko::reorder::Rcm< ValueType, IndexType > | Rcm (Reverse Cuthill-McKee) is a reordering algorithm minimizing the bandwidth of a matrix |
►Cgko::ConvertibleTo< RowGatherer< IndexType > > | |
►Cgko::EnablePolymorphicAssignment< RowGatherer< IndexType > > | |
►Cgko::EnableLinOp< RowGatherer< IndexType > > | |
Cgko::matrix::RowGatherer< IndexType > | RowGatherer is a matrix "format" which stores the gather indices arrays which can be used to gather rows to another matrix |
►Cgko::ConvertibleTo< ScaledPermutation< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< ScaledPermutation< ValueType, IndexType > > | |
►Cgko::EnableLinOp< ScaledPermutation< ValueType, IndexType > > | |
Cgko::matrix::ScaledPermutation< ValueType, IndexType > | ScaledPermutation is a matrix combining a permutation with scaling factors |
►Cgko::ConvertibleTo< ScaledReordered< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< ScaledReordered< ValueType, IndexType > > | |
►Cgko::EnableLinOp< ScaledReordered< ValueType, IndexType > > | |
Cgko::experimental::reorder::ScaledReordered< ValueType, IndexType > | Provides an interface to wrap reorderings like Rcm and diagonal scaling like equilibration around a LinOp like e.g |
►Cgko::ConvertibleTo< Schwarz< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnablePolymorphicAssignment< Schwarz< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnableLinOp< Schwarz< ValueType, LocalIndexType, GlobalIndexType > > | |
Cgko::experimental::distributed::preconditioner::Schwarz< ValueType, LocalIndexType, GlobalIndexType > | A Schwarz preconditioner is a simple domain decomposition preconditioner that generalizes the Block Jacobi preconditioner, incorporating options for different local subdomain solvers and overlaps between the subdomains |
►Cgko::ConvertibleTo< Sellp< next_precision< ValueType >, IndexType > > | |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
►Cgko::ConvertibleTo< Sellp< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Sellp< ValueType, IndexType > > | |
►Cgko::EnableLinOp< Sellp< ValueType, IndexType > > | |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ConvertibleTo< Sellp< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Sellp< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< Sor< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< Sor< ValueType, IndexType > > | |
Cgko::preconditioner::Sor< ValueType, IndexType > | This class generates the (S)SOR preconditioner |
►Cgko::ConvertibleTo< SparsityCsr< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< SparsityCsr< ValueType, IndexType > > | |
►Cgko::EnableLinOp< SparsityCsr< ValueType, IndexType > > | |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
►Cgko::ConvertibleTo< SparsityCsr< ValueType, int32 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< SparsityCsr< ValueType, int64 > > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::ConvertibleTo< UpperTrs< ValueType, IndexType > > | |
►Cgko::EnablePolymorphicAssignment< UpperTrs< ValueType, IndexType > > | |
►Cgko::EnableLinOp< UpperTrs< ValueType, IndexType > > | |
Cgko::solver::UpperTrs< ValueType, IndexType > | UpperTrs is the triangular solver which solves the system U x = b, when U is an upper triangular matrix |
►Cgko::ConvertibleTo< Vector< next_precision_base< ValueType > > > | |
Cgko::experimental::distributed::Vector< ValueType > | Vector is a format which explicitly stores (multiple) distributed column vectors in a dense storage format |
►Cgko::ConvertibleTo< Vector< ValueType > > | |
►Cgko::EnablePolymorphicAssignment< Vector< ValueType > > | |
►Cgko::EnableLinOp< Vector< ValueType > > | |
Cgko::experimental::distributed::Vector< ValueType > | Vector is a format which explicitly stores (multiple) distributed column vectors in a dense storage format |
Cgko::matrix::CooBuilder< ValueType, IndexType > | |
Cgko::cpx_real_type< T > | Access the underlying real type of a complex number |
►CCriterion | |
►Cgko::EnableAbstractPolymorphicObject< Combined, Criterion > | |
►Cgko::EnablePolymorphicObject< Combined, Criterion > | |
Cgko::stop::Combined | Used to combine multiple criterions together through an OR operation |
►Cgko::EnableAbstractPolymorphicObject< Iteration, Criterion > | |
►Cgko::EnablePolymorphicObject< Iteration, Criterion > | |
Cgko::stop::Iteration | Stopping criterion which stops the iteration process after a preset number of iterations |
►Cgko::EnableAbstractPolymorphicObject< ResidualNormBase< ValueType >, Criterion > | |
►Cgko::EnablePolymorphicObject< ResidualNormBase< ValueType >, Criterion > | |
►Cgko::stop::ResidualNormBase< ValueType > | The ResidualNormBase class provides a framework for stopping criteria related to the residual norm |
Cgko::stop::AbsoluteResidualNorm< ValueType > | The AbsoluteResidualNorm class is a stopping criterion which stops the iteration process when the residual norm is below a certain threshold, i.e |
Cgko::stop::ImplicitResidualNorm< ValueType > | The ImplicitResidualNorm class is a stopping criterion which stops the iteration process when the implicit residual norm is below a certain threshold relative to |
Cgko::stop::RelativeResidualNorm< ValueType > | The RelativeResidualNorm class is a stopping criterion which stops the iteration process when the residual norm is below a certain threshold relative to the norm of the right-hand side, i.e |
Cgko::stop::ResidualNorm< ValueType > | The ResidualNorm class is a stopping criterion which stops the iteration process when the actual residual norm is below a certain threshold relative to |
Cgko::stop::ResidualNormReduction< ValueType > | The ResidualNormReduction class is a stopping criterion which stops the iteration process when the residual norm is below a certain threshold relative to the norm of the initial residual, i.e |
►Cgko::EnableAbstractPolymorphicObject< Time, Criterion > | |
►Cgko::EnablePolymorphicObject< Time, Criterion > | |
Cgko::stop::Time | Stopping criterion which stops the iteration process after a certain amount of time has passed |
Cgko::log::criterion_data | Struct representing Criterion related data |
Cgko::stop::CriterionArgs | This struct is used to pass parameters to the EnableDefaultCriterionFactoryCriterionFactory::generate() method |
Cgko::matrix::CsrBuilder< ValueType, IndexType > | |
Cgko::cuda_stream | An RAII wrapper for a custom CUDA stream |
Cgko::default_converter< S, R > | Used to convert objects of type S to objects of type R using static_cast |
Cgko::deferred_factory_parameter< FactoryType > | Represents a factory parameter of factory type that can either initialized by a pre-existing factory or by passing in a factory_parameters object whose .on(exec) will be called to instantiate a factory |
Cgko::deferred_factory_parameter< const gko::LinOpFactory > | |
Cgko::deferred_factory_parameter< const typename l_solver_type::Factory > | |
Cgko::deferred_factory_parameter< const typename u_solver_type::Factory > | |
Cgko::deferred_factory_parameter< excess_solver_factory_type > | |
Cgko::deferred_factory_parameter< factorization_type > | |
Cgko::deferred_factory_parameter< l_solver_type > | |
Cgko::deferred_factory_parameter< local_solver_type > | |
Cgko::deferred_factory_parameter< preconditioner_type > | |
Cgko::deferred_factory_parameter< solver_type > | |
Cgko::deferred_factory_parameter< u_solver_type > | |
Cgko::device_matrix_data< ValueType, IndexType > | This type is a device-side equivalent to matrix_data |
►Cgko::DiagonalLinOpExtractable | The diagonal of a LinOp can be extracted |
►Cgko::DiagonalExtractable< ValueType > | The diagonal of a LinOp implementing this interface can be extracted |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::dim< Dimensionality, DimensionType > | A type representing the dimensions of a multidimensional object |
Cgko::dim< 1u, DimensionType > | |
Cgko::dim< 2 > | |
Cgko::dim< 3 > | |
Cgko::dim< dimensionality, dimension_type > | |
►Cgko::experimental::distributed::DistributedBase | A base class for distributed objects |
Cgko::experimental::distributed::Matrix< ValueType, LocalIndexType, GlobalIndexType > | The Matrix class defines a (MPI-)distributed matrix |
Cgko::experimental::distributed::Vector< ValueType > | Vector is a format which explicitly stores (multiple) distributed column vectors in a dense storage format |
►Cgko::enable_parameters_type< ConcreteParametersType, Factory > | The enable_parameters_type mixin is used to create a base implementation of the factory parameters structure |
Cgko::experimental::reorder::Rcm< IndexType >::parameters_type | |
►Cgko::enable_parameters_type< Parameters, Factory > | |
Cgko::batch::solver::enable_preconditioned_iterative_solver_factory_parameters< Parameters, Factory > | |
►Cgko::solver::enable_iterative_solver_factory_parameters< Parameters, Factory > | |
Cgko::solver::enable_preconditioned_iterative_solver_factory_parameters< Parameters, Factory > | |
►Cgko::enable_parameters_type< parameters_type, Amd< IndexType > > | |
Cgko::experimental::reorder::Amd< IndexType >::parameters_type | |
►Cgko::enable_parameters_type< parameters_type, Cholesky > | |
Cgko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type | |
►Cgko::enable_parameters_type< parameters_type, Factory > | |
►Cgko::solver::enable_iterative_solver_factory_parameters< parameters_type, Factory > | |
►Cgko::solver::enable_preconditioned_iterative_solver_factory_parameters< parameters_type, Factory > | |
Cgko::solver::Bicg< ValueType >::parameters_type | |
Cgko::solver::Bicgstab< ValueType >::parameters_type | |
Cgko::solver::CbGmres< ValueType >::parameters_type | |
Cgko::solver::Cg< ValueType >::parameters_type | |
Cgko::solver::Cgs< ValueType >::parameters_type | |
Cgko::solver::Fcg< ValueType >::parameters_type | |
Cgko::solver::Gcr< ValueType >::parameters_type | |
Cgko::solver::Gmres< ValueType >::parameters_type | |
Cgko::solver::Idr< ValueType >::parameters_type | |
Cgko::solver::Ir< ValueType >::parameters_type | |
Cgko::solver::Multigrid::parameters_type | |
►Cgko::batch::solver::enable_preconditioned_iterative_solver_factory_parameters< parameters_type, Factory > | |
Cgko::batch::solver::Bicgstab< ValueType >::parameters_type | |
Cgko::batch::solver::Cg< ValueType >::parameters_type | |
Cgko::batch::preconditioner::Jacobi< ValueType, IndexType >::parameters_type | |
Cgko::experimental::distributed::preconditioner::Schwarz< ValueType, LocalIndexType, GlobalIndexType >::parameters_type | |
Cgko::experimental::reorder::ScaledReordered< ValueType, IndexType >::parameters_type | |
Cgko::experimental::solver::Direct< ValueType, IndexType >::parameters_type | |
Cgko::factorization::Ic< ValueType, IndexType >::parameters_type | |
Cgko::factorization::Ilu< ValueType, IndexType >::parameters_type | |
Cgko::factorization::ParIc< ValueType, IndexType >::parameters_type | |
Cgko::factorization::ParIct< ValueType, IndexType >::parameters_type | |
Cgko::factorization::ParIlu< ValueType, IndexType >::parameters_type | |
Cgko::factorization::ParIlut< ValueType, IndexType >::parameters_type | |
Cgko::multigrid::FixedCoarsening< ValueType, IndexType >::parameters_type | |
Cgko::multigrid::Pgm< ValueType, IndexType >::parameters_type | |
Cgko::preconditioner::Ic< LSolverType, IndexType >::parameters_type | |
Cgko::preconditioner::Ilu< LSolverType, USolverType, ReverseApply, IndexType >::parameters_type | |
Cgko::preconditioner::Isai< IsaiType, ValueType, IndexType >::parameters_type | |
Cgko::preconditioner::Jacobi< ValueType, IndexType >::parameters_type | |
Cgko::reorder::Rcm< ValueType, IndexType >::parameters_type | |
Cgko::solver::LowerTrs< ValueType, IndexType >::parameters_type | |
Cgko::solver::UpperTrs< ValueType, IndexType >::parameters_type | |
Cgko::stop::AbsoluteResidualNorm< ValueType >::parameters_type | |
Cgko::stop::Combined::parameters_type | |
Cgko::stop::ImplicitResidualNorm< ValueType >::parameters_type | |
Cgko::stop::Iteration::parameters_type | |
Cgko::stop::RelativeResidualNorm< ValueType >::parameters_type | |
Cgko::stop::ResidualNorm< ValueType >::parameters_type | |
Cgko::stop::ResidualNormReduction< ValueType >::parameters_type | |
Cgko::stop::Time::parameters_type | |
►Cgko::enable_parameters_type< parameters_type, GaussSeidel > | |
Cgko::preconditioner::GaussSeidel< ValueType, IndexType >::parameters_type | |
►Cgko::enable_parameters_type< parameters_type, Lu > | |
Cgko::experimental::factorization::Lu< ValueType, IndexType >::parameters_type | |
►Cgko::enable_parameters_type< parameters_type, Mc64 > | |
Cgko::experimental::reorder::Mc64< ValueType, IndexType >::parameters_type | |
Cgko::enable_parameters_type< parameters_type, Rcm< IndexType > > | |
►Cgko::enable_parameters_type< parameters_type, Sor > | |
Cgko::preconditioner::Sor< ValueType, IndexType >::parameters_type | |
►Cenable_shared_from_this | |
Cgko::CudaExecutor | This is the Executor subclass which represents the CUDA device |
Cgko::DpcppExecutor | This is the Executor subclass which represents a DPC++ enhanced device |
Cgko::HipExecutor | This is the Executor subclass which represents the HIP enhanced device |
►Cgko::OmpExecutor | This is the Executor subclass which represents the OpenMP device (typically CPU) |
Cgko::ReferenceExecutor | This is a specialization of the OmpExecutor, which runs the reference implementations of the kernels used for debugging purposes |
Cgko::EnableCreateMethod< ConcreteType > | This mixin implements a static create() method on ConcreteType that dynamically allocates the memory, uses the passed-in arguments to construct the object, and returns an std::unique_ptr to such an object |
►Cgko::EnableCreateMethod< Combination< ValueType > > | |
Cgko::Combination< ValueType > | The Combination class can be used to construct a linear combination of multiple linear operators c1 * op1 + c2 * op2 + .. |
►Cgko::EnableCreateMethod< Composition< ValueType > > | |
Cgko::Composition< ValueType > | The Composition class can be used to compose linear operators op1, op2, ..., opn and obtain the operator op1 * op2 * .. |
►Cgko::EnableCreateMethod< Perturbation< ValueType > > | |
Cgko::Perturbation< ValueType > | The Perturbation class can be used to construct a LinOp to represent the operation (identity + scalar * basis * projector) |
►Cgko::detail::EnableDeviceReset | Controls whether the DeviceReset function should be called thanks to a boolean |
Cgko::CudaExecutor | This is the Executor subclass which represents the CUDA device |
Cgko::HipExecutor | This is the Executor subclass which represents the HIP enhanced device |
Cgko::experimental::mpi::environment | Class that sets up and finalizes the MPI environment |
Cgko::err< T > | |
►Cstd::exception | STL class |
►Cgko::Error | Used to report exceptional behaviour in library functions |
Cgko::AllocationError | AllocationError is thrown if a memory allocation fails |
Cgko::BadDimension | BadDimension is thrown if an operation is being applied to a LinOp with bad dimensions |
Cgko::BlockSizeError< IndexType > | Error that denotes issues between block sizes and matrix dimensions |
Cgko::CublasError | CublasError is thrown when a cuBLAS routine throws a non-zero error code |
Cgko::CudaError | CudaError is thrown when a CUDA routine throws a non-zero error code |
Cgko::CufftError | CufftError is thrown when a cuFFT routine throws a non-zero error code |
Cgko::CurandError | CurandError is thrown when a cuRAND routine throws a non-zero error code |
Cgko::CusparseError | CusparseError is thrown when a cuSPARSE routine throws a non-zero error code |
Cgko::DimensionMismatch | DimensionMismatch is thrown if an operation is being applied to LinOps of incompatible size |
Cgko::HipblasError | HipblasError is thrown when a hipBLAS routine throws a non-zero error code |
Cgko::HipError | HipError is thrown when a HIP routine throws a non-zero error code |
Cgko::HipfftError | HipfftError is thrown when a hipFFT routine throws a non-zero error code |
Cgko::HiprandError | HiprandError is thrown when a hipRAND routine throws a non-zero error code |
Cgko::HipsparseError | HipsparseError is thrown when a hipSPARSE routine throws a non-zero error code |
Cgko::InvalidStateError | Exception thrown if an object is in an invalid state |
Cgko::KernelNotFound | KernelNotFound is thrown if Ginkgo cannot find a kernel which satisfies the criteria imposed by the input arguments |
Cgko::MetisError | MetisError is thrown when METIS routine throws an error code |
Cgko::MpiError | MpiError is thrown when a MPI routine throws a non-zero error code |
Cgko::NotCompiled | NotCompiled is thrown when attempting to call an operation which is a part of a module that was not compiled on the system |
Cgko::NotImplemented | NotImplemented is thrown in case an operation has not yet been implemented (but will be implemented in the future) |
Cgko::NotSupported | NotSupported is thrown in case it is not possible to perform the requested operation on the given object type |
Cgko::OutOfBoundsError | OutOfBoundsError is thrown if a memory access is detected to be out-of-bounds |
Cgko::OverflowError | OverflowError is thrown when an index calculation for storage requirements overflows |
Cgko::StreamError | StreamError is thrown if accessing a stream failed |
Cgko::UnsupportedMatrixProperty | Exception throws if a matrix does not have a property required by a numerical method |
Cgko::ValueMismatch | ValueMismatch is thrown if two values are not equal |
Cgko::log::executor_data | Struct representing Executor related data |
Cgko::executor_deleter< T > | This is a deleter that uses an executor's free method to deallocate the data |
Cgko::executor_deleter< T[]> | |
►Cfalse_type | |
Cgko::solver::has_with_criteria< SolverType, typename > | Helper structure to test if the Factory of SolverType has a function with_criteria |
Cgko::matrix::FbcsrBuilder< ValueType, IndexType > | |
Cgko::half | A class providing basic support for half precision floating point types |
Cgko::hip_stream | An RAII wrapper for a custom HIP stream |
Chwloc_obj_t | |
Chwloc_obj_type_t | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::add > | |
Cgko::accessor::add< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::bitwise_and > | |
Cgko::accessor::bitwise_and< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::bitwise_or > | |
Cgko::accessor::bitwise_or< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::bitwise_xor > | |
Cgko::accessor::bitwise_xor< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::div > | |
Cgko::accessor::div< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::equal > | |
Cgko::accessor::equal< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::greater > | |
Cgko::accessor::greater< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::greater_or_equal > | |
Cgko::accessor::greater_or_equal< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::left_shift > | |
Cgko::accessor::left_shift< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::less > | |
Cgko::accessor::less< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::less_or_equal > | |
Cgko::accessor::less_or_equal< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::logical_and > | |
Cgko::accessor::logical_and< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::logical_or > | |
Cgko::accessor::logical_or< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::max_operation > | |
Cgko::accessor::max_operation< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::min_operation > | |
Cgko::accessor::min_operation< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::mod > | |
Cgko::accessor::mod< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::mul > | |
Cgko::accessor::mul< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::not_equal > | |
Cgko::accessor::not_equal< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::right_shift > | |
Cgko::accessor::right_shift< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_binary_operation< Kind, FirstOperand, SecondOperand, ::gko::accessor::detail::sub > | |
Cgko::accessor::sub< Kind, FirstOperand, SecondOperand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::abs_operation > | |
►Cgko::accessor::abs_operation< Operand > | |
Cgko::accessor::abs_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::bitwise_not > | |
Cgko::accessor::bitwise_not< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::conj_operation > | |
►Cgko::accessor::conj_operation< Operand > | |
Cgko::accessor::conj_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::imag_operation > | |
►Cgko::accessor::imag_operation< Operand > | |
Cgko::accessor::imag_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::logical_not > | |
Cgko::accessor::logical_not< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::one_operation > | |
►Cgko::accessor::one_operation< Operand > | |
Cgko::accessor::one_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::real_operation > | |
►Cgko::accessor::real_operation< Operand > | |
Cgko::accessor::real_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::squared_norm_operation > | |
►Cgko::accessor::squared_norm_operation< Operand > | |
Cgko::accessor::squared_norm_operaton< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::unary_minus > | |
Cgko::accessor::unary_minus< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::unary_plus > | |
Cgko::accessor::unary_plus< Operand > | |
►Cgko::detail::implement_unary_operation< Operand, ::gko::accessor::detail::zero_operation > | |
Cgko::accessor::zero_operation< Operand > | |
Cgko::experimental::distributed::index_map< LocalIndexType, GlobalIndexType > | This class defines mappings between global and local indices |
Cgko::index_set< IndexType > | An index set class represents an ordered set of intervals |
Cgko::log::iteration_complete_data | Struct representing iteration complete related data |
►Cgko::solver::IterativeBase | A LinOp implementing this interface stores a stopping criterion factory |
►Cgko::solver::EnableIterativeBase< Bicg< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicg< ValueType > > | |
Cgko::solver::Bicg< ValueType > | BICG or the Biconjugate gradient method is a Krylov subspace solver |
►Cgko::solver::EnableIterativeBase< Bicgstab< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicgstab< ValueType > > | |
Cgko::solver::Bicgstab< ValueType > | BiCGSTAB or the Bi-Conjugate Gradient-Stabilized is a Krylov subspace solver |
►Cgko::solver::EnableIterativeBase< CbGmres< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, CbGmres< ValueType > > | |
Cgko::solver::CbGmres< ValueType > | CB-GMRES or the compressed basis generalized minimal residual method is an iterative type Krylov subspace method which is suitable for nonsymmetric linear systems |
►Cgko::solver::EnableIterativeBase< Cg< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cg< ValueType > > | |
Cgko::solver::Cg< ValueType > | CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
►Cgko::solver::EnableIterativeBase< Cgs< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cgs< ValueType > > | |
Cgko::solver::Cgs< ValueType > | CGS or the conjugate gradient square method is an iterative type Krylov subspace method which is suitable for general systems |
►Cgko::solver::EnableIterativeBase< Fcg< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Fcg< ValueType > > | |
Cgko::solver::Fcg< ValueType > | FCG or the flexible conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
►Cgko::solver::EnableIterativeBase< Gcr< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gcr< ValueType > > | |
Cgko::solver::Gcr< ValueType > | GCR or the generalized conjugate residual method is an iterative type Krylov subspace method similar to GMRES which is suitable for nonsymmetric linear systems |
►Cgko::solver::EnableIterativeBase< Gmres< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gmres< ValueType > > | |
Cgko::solver::Gmres< ValueType > | GMRES or the generalized minimal residual method is an iterative type Krylov subspace method which is suitable for nonsymmetric linear systems |
►Cgko::solver::EnableIterativeBase< Idr< ValueType > > | |
►Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Idr< ValueType > > | |
Cgko::solver::Idr< ValueType > | IDR(s) is an efficient method for solving large nonsymmetric systems of linear equations |
►Cgko::solver::EnableIterativeBase< Ir< ValueType > > | |
Cgko::solver::Ir< ValueType > | Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the error of the current solution via the current residual |
►Cgko::solver::EnableIterativeBase< Multigrid > | |
Cgko::solver::Multigrid | Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level, of the problem |
►Cgko::solver::EnableIterativeBase< DerivedType > | A LinOp deriving from this CRTP class stores a stopping criterion factory and allows applying with a guess |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, DerivedType > | A LinOp implementing this interface stores a system matrix and stopping criterion factory |
Cgko::log::linop_data | Struct representing LinOp related data |
Cgko::log::linop_factory_data | Struct representing LinOp factory related data |
►Cgko::log::Loggable | Loggable class is an interface which should be implemented by classes wanting to support logging |
►Cgko::log::EnableLogging< Executor > | |
►Cgko::Executor | The first step in using the Ginkgo library consists of creating an executor |
►Cgko::detail::ExecutorBase< DpcppExecutor > | |
Cgko::DpcppExecutor | This is the Executor subclass which represents a DPC++ enhanced device |
►Cgko::detail::ExecutorBase< ConcreteExecutor > | |
Cgko::CudaExecutor | This is the Executor subclass which represents the CUDA device |
Cgko::HipExecutor | This is the Executor subclass which represents the HIP enhanced device |
Cgko::OmpExecutor | This is the Executor subclass which represents the OpenMP device (typically CPU) |
►Cgko::log::EnableLogging< PolymorphicObject > | |
►Cgko::PolymorphicObject | A PolymorphicObject is the abstract base for all "heavy" objects in Ginkgo that behave polymorphically |
►Cgko::EnableAbstractPolymorphicObject< AbstractFactory< AbstractProductType, ComponentsType > > | |
Cgko::AbstractFactory< AbstractProductType, ComponentsType > | The AbstractFactory is a generic interface template that enables easy implementation of the abstract factory design pattern |
►Cgko::EnableAbstractPolymorphicObject< AbstractFactory< BatchLinOp, std::shared_ptr< const BatchLinOp > > > | |
►Cgko::AbstractFactory< BatchLinOp, std::shared_ptr< const BatchLinOp > > | |
Cgko::batch::BatchLinOpFactory | A BatchLinOpFactory represents a higher order mapping which transforms one batch linear operator into another |
►Cgko::EnableAbstractPolymorphicObject< AbstractFactory< LinOp, std::shared_ptr< const LinOp > > > | |
►Cgko::AbstractFactory< LinOp, std::shared_ptr< const LinOp > > | |
►Cgko::LinOpFactory | A LinOpFactory represents a higher order mapping which transforms one linear operator into another |
►Cgko::EnableAbstractPolymorphicObject< Amd< IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Amd< IndexType >, LinOpFactory > | |
Cgko::experimental::reorder::Amd< IndexType > | Computes a Approximate Minimum Degree (AMD) reordering of an input matrix |
►Cgko::EnableAbstractPolymorphicObject< Cholesky< ValueType, IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Cholesky< ValueType, IndexType >, LinOpFactory > | |
Cgko::experimental::factorization::Cholesky< ValueType, IndexType > | Computes a Cholesky factorization of a symmetric, positive-definite sparse matrix |
►Cgko::EnableAbstractPolymorphicObject< GaussSeidel< ValueType, IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< GaussSeidel< ValueType, IndexType >, LinOpFactory > | |
Cgko::preconditioner::GaussSeidel< ValueType, IndexType > | This class generates the Gauss-Seidel preconditioner |
►Cgko::EnableAbstractPolymorphicObject< IdentityFactory< ValueType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< IdentityFactory< ValueType >, LinOpFactory > | |
Cgko::matrix::IdentityFactory< ValueType > | This factory is a utility which can be used to generate Identity operators |
►Cgko::EnableAbstractPolymorphicObject< Lu< ValueType, IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Lu< ValueType, IndexType >, LinOpFactory > | |
Cgko::experimental::factorization::Lu< ValueType, IndexType > | Computes an LU factorization of a sparse matrix |
►Cgko::EnableAbstractPolymorphicObject< Mc64< ValueType, IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Mc64< ValueType, IndexType >, LinOpFactory > | |
Cgko::experimental::reorder::Mc64< ValueType, IndexType > | MC64 is an algorithm for permuting large entries to the diagonal of a sparse matrix |
►Cgko::EnableAbstractPolymorphicObject< Rcm< IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Rcm< IndexType >, LinOpFactory > | |
Cgko::experimental::reorder::Rcm< IndexType > | Rcm (Reverse Cuthill-McKee) is a reordering algorithm minimizing the bandwidth of a matrix |
►Cgko::EnableAbstractPolymorphicObject< Sor< ValueType, IndexType >, LinOpFactory > | |
►Cgko::EnablePolymorphicObject< Sor< ValueType, IndexType >, LinOpFactory > | |
Cgko::preconditioner::Sor< ValueType, IndexType > | This class generates the (S)SOR preconditioner |
►Cgko::EnableAbstractPolymorphicObject< BatchLinOp > | |
Cgko::batch::BatchLinOp | |
►Cgko::EnableAbstractPolymorphicObject< Criterion > | |
Cgko::stop::Criterion | Base class for all stopping criteria |
►Cgko::EnableAbstractPolymorphicObject< LinOp > | |
►Cgko::LinOp | |
►Cgko::EnableAbstractPolymorphicObject< Bicg< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Bicg< ValueType >, LinOp > | |
Cgko::EnableLinOp< Bicg< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Bicgstab< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Bicgstab< ValueType >, LinOp > | |
Cgko::EnableLinOp< Bicgstab< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< BlockOperator, LinOp > | |
►Cgko::EnablePolymorphicObject< BlockOperator, LinOp > | |
Cgko::EnableLinOp< BlockOperator > | |
►Cgko::EnableAbstractPolymorphicObject< CbGmres< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< CbGmres< ValueType >, LinOp > | |
Cgko::EnableLinOp< CbGmres< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Cg< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Cg< ValueType >, LinOp > | |
Cgko::EnableLinOp< Cg< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Cgs< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Cgs< ValueType >, LinOp > | |
Cgko::EnableLinOp< Cgs< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Combination< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Combination< ValueType >, LinOp > | |
Cgko::EnableLinOp< Combination< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Composition< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Composition< ValueType >, LinOp > | |
Cgko::EnableLinOp< Composition< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Coo< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Coo< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Coo< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Csr< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Csr< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Csr< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Dense< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Dense< ValueType >, LinOp > | |
Cgko::EnableLinOp< Dense< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Diagonal< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Diagonal< ValueType >, LinOp > | |
Cgko::EnableLinOp< Diagonal< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Direct< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Direct< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Direct< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Ell< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Ell< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Ell< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Factorization< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Factorization< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Factorization< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Fbcsr< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Fbcsr< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Fbcsr< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Fcg< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Fcg< ValueType >, LinOp > | |
Cgko::EnableLinOp< Fcg< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Fft, LinOp > | |
►Cgko::EnablePolymorphicObject< Fft, LinOp > | |
Cgko::EnableLinOp< Fft > | |
►Cgko::EnableAbstractPolymorphicObject< Fft2, LinOp > | |
►Cgko::EnablePolymorphicObject< Fft2, LinOp > | |
Cgko::EnableLinOp< Fft2 > | |
►Cgko::EnableAbstractPolymorphicObject< Fft3, LinOp > | |
►Cgko::EnablePolymorphicObject< Fft3, LinOp > | |
Cgko::EnableLinOp< Fft3 > | |
►Cgko::EnableAbstractPolymorphicObject< FixedCoarsening< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< FixedCoarsening< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< FixedCoarsening< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Gcr< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Gcr< ValueType >, LinOp > | |
Cgko::EnableLinOp< Gcr< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Gmres< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Gmres< ValueType >, LinOp > | |
Cgko::EnableLinOp< Gmres< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Hybrid< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Hybrid< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Hybrid< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Ic< LSolverType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Ic< LSolverType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Ic< LSolverType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Identity< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Identity< ValueType >, LinOp > | |
Cgko::EnableLinOp< Identity< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Idr< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Idr< ValueType >, LinOp > | |
Cgko::EnableLinOp< Idr< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Ilu< LSolverType, USolverType, ReverseApply, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Ilu< LSolverType, USolverType, ReverseApply, IndexType >, LinOp > | |
Cgko::EnableLinOp< Ilu< LSolverType, USolverType, ReverseApply, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Ir< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Ir< ValueType >, LinOp > | |
Cgko::EnableLinOp< Ir< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Isai< IsaiType, ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Isai< IsaiType, ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Isai< IsaiType, ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Jacobi< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Jacobi< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Jacobi< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< LowerTrs< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< LowerTrs< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< LowerTrs< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Matrix< ValueType, LocalIndexType, GlobalIndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Matrix< ValueType, LocalIndexType, GlobalIndexType >, LinOp > | |
Cgko::EnableLinOp< Matrix< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Multigrid, LinOp > | |
►Cgko::EnablePolymorphicObject< Multigrid, LinOp > | |
Cgko::EnableLinOp< Multigrid > | |
►Cgko::EnableAbstractPolymorphicObject< Permutation< IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Permutation< IndexType >, LinOp > | |
Cgko::EnableLinOp< Permutation< IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Perturbation< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Perturbation< ValueType >, LinOp > | |
Cgko::EnableLinOp< Perturbation< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< Pgm< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Pgm< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Pgm< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< RowGatherer< IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< RowGatherer< IndexType >, LinOp > | |
Cgko::EnableLinOp< RowGatherer< IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< ScaledPermutation< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< ScaledPermutation< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< ScaledPermutation< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< ScaledReordered< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< ScaledReordered< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< ScaledReordered< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Schwarz< ValueType, LocalIndexType, GlobalIndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Schwarz< ValueType, LocalIndexType, GlobalIndexType >, LinOp > | |
Cgko::EnableLinOp< Schwarz< ValueType, LocalIndexType, GlobalIndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Sellp< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Sellp< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< Sellp< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< SparsityCsr< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< SparsityCsr< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< SparsityCsr< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< UpperTrs< ValueType, IndexType >, LinOp > | |
►Cgko::EnablePolymorphicObject< UpperTrs< ValueType, IndexType >, LinOp > | |
Cgko::EnableLinOp< UpperTrs< ValueType, IndexType > > | |
►Cgko::EnableAbstractPolymorphicObject< Vector< ValueType >, LinOp > | |
►Cgko::EnablePolymorphicObject< Vector< ValueType >, LinOp > | |
Cgko::EnableLinOp< Vector< ValueType > > | |
►Cgko::EnableAbstractPolymorphicObject< MultiVector< ValueType >, PolymorphicObject > | |
►Cgko::EnablePolymorphicObject< MultiVector< ValueType > > | |
Cgko::batch::MultiVector< ValueType > | MultiVector stores multiple vectors in a batched fashion and is useful for batched operations |
►Cgko::EnableAbstractPolymorphicObject< Partition< LocalIndexType, GlobalIndexType >, PolymorphicObject > | |
►Cgko::EnablePolymorphicObject< Partition< LocalIndexType, GlobalIndexType > > | |
Cgko::experimental::distributed::Partition< LocalIndexType, GlobalIndexType > | Represents a partition of a range of indices [0, size) into a disjoint set of parts |
►Cgko::EnableAbstractPolymorphicObject< ReorderingBase< IndexType > > | |
Cgko::reorder::ReorderingBase< IndexType > | The ReorderingBase class is a base class for all the reordering algorithms |
Cgko::log::Record::logged_data | Struct storing the actually logged data |
►Cgko::log::Logger | |
Cgko::batch::log::BatchConvergence< ValueType > | Logs the final residuals and iteration counts for a batch solver |
Cgko::log::Convergence< ValueType > | Convergence is a Logger which logs data strictly from the criterion_check_completed event |
Cgko::log::Papi< ValueType > | Papi is a Logger which logs every event to the PAPI software |
Cgko::log::PerformanceHint | PerformanceHint is a Logger which analyzes the performance of the application and outputs hints for unnecessary copies and allocations |
Cgko::log::ProfilerHook | This Logger can be used to annotate the execution of Ginkgo functionality with profiler-specific ranges |
Cgko::log::Record | Record is a Logger which logs every event to an object |
Cgko::log::SolverProgress | This Logger outputs the value of all scalar values (and potentially vectors) stored internally by the solver after each iteration |
Cgko::log::Stream< ValueType > | Stream is a Logger which logs every event to a stream |
Cgko::machine_topology | The machine topology class represents the hierarchical topology of a machine, including NUMA nodes, cores and PCI Devices |
Cgko::matrix_assembly_data< ValueType, IndexType > | This structure is used as an intermediate type to assemble a sparse matrix |
Cgko::matrix_data< ValueType, IndexType > | This structure is used as an intermediate data type to store a sparse matrix |
Cgko::matrix_data_entry< ValueType, IndexType > | Type used to store nonzeros |
Cgko::accessor::mmul_operation< Kind, FirstAccessor, SecondAccessor > | |
►Cgko::multigrid::MultigridLevel | This class represents two levels in a multigrid hierarchy |
►Cgko::multigrid::EnableMultigridLevel< ValueType > | The EnableMultigridLevel gives the default implementation of MultigridLevel with composition and provides set_multigrid_level function |
Cgko::multigrid::FixedCoarsening< ValueType, IndexType > | FixedCoarsening is a very simple coarse grid generation algorithm |
Cgko::multigrid::Pgm< ValueType, IndexType > | Parallel graph match (Pgm) is the aggregate method introduced in the paper M |
Cgko::log::ProfilerHook::nested_summary_entry | |
►Cgko::log::ProfilerHook::NestedSummaryWriter | Receives the results from ProfilerHook::create_nested_summary() |
Cgko::log::ProfilerHook::TableSummaryWriter | Writes the results from ProfilerHook::create_summary() and ProfilerHook::create_nested_summary() to a ASCII table in Markdown format |
Cgko::null_deleter< T > | This is a deleter that does not delete the object |
Cgko::null_deleter< T[]> | |
Cgko::nvidia_device | Nvidia_device handles the number of executor on Nvidia devices and have the corresponding recursive_mutex |
Cgko::Operation | Operations can be used to define functionalities whose implementations differ among devices |
Cgko::log::operation_data | Struct representing Operator related data |
►Cgko::Permutable< IndexType > | Linear operators which support permutation should implement the Permutable interface |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
►Cgko::Permutable< int32 > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
►Cgko::Permutable< int64 > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::config::pnode | Pnode describes a tree of properties |
Cgko::log::polymorphic_object_data | Struct representing PolymorphicObject related data |
►CPolymorphicBase | |
►Cgko::EnableAbstractPolymorphicObject< ConcreteBatchLinOp, PolymorphicBase > | |
►Cgko::EnablePolymorphicObject< ConcreteBatchLinOp, PolymorphicBase > | |
Cgko::batch::EnableBatchLinOp< ConcreteBatchLinOp, PolymorphicBase > | The EnableBatchLinOp mixin can be used to provide sensible default implementations of the majority of the BatchLinOp and PolymorphicObject interface |
►Cgko::EnableAbstractPolymorphicObject< ConcreteFactory, PolymorphicBase > | |
►Cgko::EnablePolymorphicObject< ConcreteFactory, PolymorphicBase > | |
Cgko::EnableDefaultFactory< ConcreteFactory, ProductType, ParametersType, PolymorphicBase > | This mixin provides a default implementation of a concrete factory |
►Cgko::EnableAbstractPolymorphicObject< ConcreteLinOp, PolymorphicBase > | |
►Cgko::EnablePolymorphicObject< ConcreteLinOp, PolymorphicBase > | |
Cgko::EnableLinOp< ConcreteLinOp, PolymorphicBase > | The EnableLinOp mixin can be used to provide sensible default implementations of the majority of the LinOp and PolymorphicObject interface |
►Cgko::EnableAbstractPolymorphicObject< ConcreteObject, PolymorphicBase > | |
Cgko::EnablePolymorphicObject< ConcreteObject, PolymorphicBase > | This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a new concrete polymorphic object |
►Cgko::EnableAbstractPolymorphicObject< ConcreteSolver, PolymorphicBase > | |
►Cgko::EnablePolymorphicObject< ConcreteSolver, PolymorphicBase > | |
Cgko::batch::EnableBatchLinOp< ConcreteSolver, PolymorphicBase > | |
Cgko::EnableAbstractPolymorphicObject< AbstractObject, PolymorphicBase > | This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a new abstract object |
Cgko::log::EnableLogging< ConcreteLoggable, PolymorphicBase > | EnableLogging is a mixin which should be inherited by any class which wants to enable logging |
Cgko::precision_reduction | This class is used to encode storage precisions of low precision algorithms |
►Cgko::Preconditionable | A LinOp implementing this interface can be preconditioned |
►Cgko::solver::EnablePreconditionable< Bicg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicg< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Bicgstab< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicgstab< ValueType > > | |
►Cgko::solver::EnablePreconditionable< CbGmres< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, CbGmres< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Cg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cg< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Cgs< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cgs< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Fcg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Fcg< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Gcr< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gcr< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Gmres< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gmres< ValueType > > | |
►Cgko::solver::EnablePreconditionable< Idr< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Idr< ValueType > > | |
►Cgko::solver::EnablePreconditionable< DerivedType > | Mixin providing default operation for Preconditionable with correct value semantics |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, DerivedType > | A LinOp implementing this interface stores a system matrix and stopping criterion factory |
Cgko::log::profiling_scope_guard | Scope guard that annotates its scope with the provided profiler hooks |
Cgko::ptr_param< T > | This class is used for function parameters in the place of raw pointers |
Cgko::range< Accessor > | A range is a multidimensional view of the memory |
Cgko::syn::range< Start, End, Step > | Range records start, end, step in template |
►Cgko::ReadableFromMatrixData< ValueType, IndexType > | A LinOp implementing this interface can read its data from a matrix_data structure |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
►Cgko::ReadableFromMatrixData< ValueType, int32 > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::ReadableFromMatrixData< ValueType, int64 > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
Cgko::config::registry | This class stores additional context for creating Ginkgo objects from configuration files |
►CReorderingBase | |
►Cgko::EnableAbstractPolymorphicObject< Rcm< ValueType, IndexType >, ReorderingBase< IndexType > > | |
►Cgko::EnablePolymorphicObject< Rcm< ValueType, IndexType >, ReorderingBase< IndexType > > | |
Cgko::reorder::Rcm< ValueType, IndexType > | Rcm (Reverse Cuthill-McKee) is a reordering algorithm minimizing the bandwidth of a matrix |
Cgko::reorder::ReorderingBaseArgs | This struct is used to pass parameters to the EnableDefaultReorderingBaseFactory::generate() method |
Cgko::experimental::mpi::request | Light, move-only wrapper around the MPI_Request handle |
Cgko::accessor::row_major< ValueType, Dimensionality > | A row_major accessor is a bridge between a range and the row-major memory layout |
►Cgko::ScaledIdentityAddable | Adds the operation M <- a I + b M for matrix M, identity operator I and scalars a and b, where M is the calling object |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::scoped_device_id_guard | This move-only class uses RAII to set the device id within a scoped block, if necessary |
Cgko::segmented_array< T > | A minimal interface for a segmented array |
Cgko::segmented_array< GlobalIndexType > | |
Cgko::segmented_array< LocalIndexType > | |
►Cgko::solver::detail::SolverBaseLinOp | A LinOp implementing this interface stores a system matrix |
►Cgko::solver::SolverBase< MatrixType > | |
Cgko::solver::EnableSolverBase< DerivedType, MatrixType > | A LinOp deriving from this CRTP class stores a system matrix |
►Cgko::solver::SolverBase< factorization::Factorization< ValueType, IndexType > > | |
►Cgko::solver::EnableSolverBase< Direct< ValueType, IndexType >, factorization::Factorization< ValueType, IndexType > > | |
Cgko::experimental::solver::Direct< ValueType, IndexType > | A direct solver based on a factorization into lower and upper triangular factors (with an optional diagonal scaling) |
►Cgko::solver::SolverBase< LinOp > | |
►Cgko::solver::EnableSolverBase< Bicg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicg< ValueType > > | |
►Cgko::solver::EnableSolverBase< Bicgstab< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Bicgstab< ValueType > > | |
►Cgko::solver::EnableSolverBase< CbGmres< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, CbGmres< ValueType > > | |
►Cgko::solver::EnableSolverBase< Cg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cg< ValueType > > | |
►Cgko::solver::EnableSolverBase< Cgs< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Cgs< ValueType > > | |
►Cgko::solver::EnableSolverBase< DerivedType > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, DerivedType > | A LinOp implementing this interface stores a system matrix and stopping criterion factory |
►Cgko::solver::EnableSolverBase< Fcg< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Fcg< ValueType > > | |
►Cgko::solver::EnableSolverBase< Gcr< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gcr< ValueType > > | |
►Cgko::solver::EnableSolverBase< Gmres< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Gmres< ValueType > > | |
►Cgko::solver::EnableSolverBase< Idr< ValueType > > | |
Cgko::solver::EnablePreconditionedIterativeSolver< ValueType, Idr< ValueType > > | |
►Cgko::solver::EnableSolverBase< Ir< ValueType > > | |
Cgko::solver::Ir< ValueType > | Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the error of the current solution via the current residual |
►Cgko::solver::EnableSolverBase< Multigrid > | |
Cgko::solver::Multigrid | Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level, of the problem |
►Cgko::solver::SolverBase< matrix::Csr< ValueType, IndexType > > | |
►Cgko::solver::EnableSolverBase< LowerTrs< ValueType, IndexType >, matrix::Csr< ValueType, IndexType > > | |
Cgko::solver::LowerTrs< ValueType, IndexType > | LowerTrs is the triangular solver which solves the system L x = b, when L is a lower triangular matrix |
►Cgko::solver::EnableSolverBase< UpperTrs< ValueType, IndexType >, matrix::Csr< ValueType, IndexType > > | |
Cgko::solver::UpperTrs< ValueType, IndexType > | UpperTrs is the triangular solver which solves the system U x = b, when U is an upper triangular matrix |
Cgko::span | A span is a lightweight structure used to create sub-ranges from other ranges |
Cgko::experimental::mpi::status | The status struct is a light wrapper around the MPI_Status struct |
Cgko::stopping_status | This class is used to keep track of the stopping status of one vector |
►Cgko::matrix::Csr< ValueType, IndexType >::strategy_type | Strategy_type is to decide how to set the csr algorithm |
Cgko::matrix::Csr< ValueType, IndexType >::automatical | |
Cgko::matrix::Csr< ValueType, IndexType >::classical | Classical is a strategy_type which uses the same number of threads on each row |
Cgko::matrix::Csr< ValueType, IndexType >::cusparse | Cusparse is a strategy_type which uses the sparselib csr |
Cgko::matrix::Csr< ValueType, IndexType >::load_balance | Load_balance is a strategy_type which uses the load balance algorithm |
Cgko::matrix::Csr< ValueType, IndexType >::merge_path | Merge_path is a strategy_type which uses the merge_path algorithm |
Cgko::matrix::Csr< ValueType, IndexType >::sparselib | Sparselib is a strategy_type which uses the sparselib csr |
►Cgko::matrix::Hybrid< ValueType, IndexType >::strategy_type | Strategy_type is to decide how to set the hybrid config |
Cgko::matrix::Hybrid< ValueType, IndexType >::automatic | Automatic is a strategy_type which decides the number of stored elements per row of the ell part automatically |
Cgko::matrix::Hybrid< ValueType, IndexType >::column_limit | Column_limit is a strategy_type which decides the number of stored elements per row of the ell part by specifying the number of columns |
Cgko::matrix::Hybrid< ValueType, IndexType >::imbalance_bounded_limit | Imbalance_bounded_limit is a strategy_type which decides the number of stored elements per row of the ell part |
Cgko::matrix::Hybrid< ValueType, IndexType >::imbalance_limit | Imbalance_limit is a strategy_type which decides the number of stored elements per row of the ell part according to the percent |
Cgko::matrix::Hybrid< ValueType, IndexType >::minimal_storage_limit | Minimal_storage_limit is a strategy_type which decides the number of stored elements per row of the ell part |
Cgko::log::ProfilerHook::summary_entry | |
►Cgko::log::ProfilerHook::SummaryWriter | Receives the results from ProfilerHook::create_summary() |
Cgko::log::ProfilerHook::TableSummaryWriter | Writes the results from ProfilerHook::create_summary() and ProfilerHook::create_nested_summary() to a ASCII table in Markdown format |
Cgko::time_point | An opaque wrapper for a time point generated by a timer |
►Cgko::Timer | Represents a generic timer that can be used to record time points and measure time differences on host or device streams |
Cgko::CpuTimer | A timer using std::chrono::steady_clock for timing |
Cgko::CudaTimer | A timer using events for timing on a CudaExecutor |
Cgko::DpcppTimer | A timer using kernels for timing on a DpcppExecutor in profiling mode |
Cgko::HipTimer | A timer using events for timing on a HipExecutor |
►Cgko::Transposable | Linear operators which support transposition should implement the Transposable interface |
Cgko::matrix::Dense< value_type > | |
Cgko::Combination< ValueType > | The Combination class can be used to construct a linear combination of multiple linear operators c1 * op1 + c2 * op2 + .. |
Cgko::Composition< ValueType > | The Composition class can be used to compose linear operators op1, op2, ..., opn and obtain the operator op1 * op2 * .. |
Cgko::experimental::solver::Direct< ValueType, IndexType > | A direct solver based on a factorization into lower and upper triangular factors (with an optional diagonal scaling) |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
Cgko::matrix::Identity< ValueType > | This class is a utility which efficiently implements the identity matrix (a linear operator which maps each vector to itself) |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
Cgko::preconditioner::Ic< LSolverType, IndexType > | The Incomplete Cholesky (IC) preconditioner solves the equation for a given lower triangular matrix L and the right hand side b (can contain multiple right hand sides) |
Cgko::preconditioner::Ilu< LSolverType, USolverType, ReverseApply, IndexType > | The Incomplete LU (ILU) preconditioner solves the equation for a given lower triangular matrix L, an upper triangular matrix U and the right hand side b (can contain multiple right hand sides) |
Cgko::preconditioner::Isai< IsaiType, ValueType, IndexType > | The Incomplete Sparse Approximate Inverse (ISAI) Preconditioner generates an approximate inverse matrix for a given square matrix A, lower triangular matrix L, upper triangular matrix U or symmetric positive (spd) matrix B |
Cgko::preconditioner::Jacobi< ValueType, IndexType > | A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal blocks of the source operator |
Cgko::solver::Bicg< ValueType > | BICG or the Biconjugate gradient method is a Krylov subspace solver |
Cgko::solver::Bicgstab< ValueType > | BiCGSTAB or the Bi-Conjugate Gradient-Stabilized is a Krylov subspace solver |
Cgko::solver::Cg< ValueType > | CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
Cgko::solver::Cgs< ValueType > | CGS or the conjugate gradient square method is an iterative type Krylov subspace method which is suitable for general systems |
Cgko::solver::Fcg< ValueType > | FCG or the flexible conjugate gradient method is an iterative type Krylov subspace method which is suitable for symmetric positive definite methods |
Cgko::solver::Gcr< ValueType > | GCR or the generalized conjugate residual method is an iterative type Krylov subspace method similar to GMRES which is suitable for nonsymmetric linear systems |
Cgko::solver::Gmres< ValueType > | GMRES or the generalized minimal residual method is an iterative type Krylov subspace method which is suitable for nonsymmetric linear systems |
Cgko::solver::Idr< ValueType > | IDR(s) is an efficient method for solving large nonsymmetric systems of linear equations |
Cgko::solver::Ir< ValueType > | Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the error of the current solution via the current residual |
Cgko::solver::LowerTrs< ValueType, IndexType > | LowerTrs is the triangular solver which solves the system L x = b, when L is a lower triangular matrix |
Cgko::solver::UpperTrs< ValueType, IndexType > | UpperTrs is the triangular solver which solves the system U x = b, when U is an upper triangular matrix |
Cgko::accessor::transpose_operation< Accessor > | |
►Ctrue_type | |
Cgko::are_all_integral< Args > | Evaluates if all template arguments Args fulfill std::is_integral |
Cgko::truncated< typename, size_t, size_t > | |
►Ctype | |
Cgko::are_all_integral< First, Args... > | |
Cgko::config::type_descriptor | This class describes the value and index types to be used when building a Ginkgo type from a configuration file |
Cgko::experimental::mpi::type_impl< T > | A struct that is used to determine the MPI_Datatype of a specified type |
Cgko::experimental::mpi::type_impl< char > | |
Cgko::experimental::mpi::type_impl< double > | |
Cgko::experimental::mpi::type_impl< float > | |
Cgko::experimental::mpi::type_impl< int > | |
Cgko::experimental::mpi::type_impl< long > | |
Cgko::experimental::mpi::type_impl< long double > | |
Cgko::experimental::mpi::type_impl< long long > | |
Cgko::experimental::mpi::type_impl< unsigned > | |
Cgko::experimental::mpi::type_impl< unsigned char > | |
Cgko::experimental::mpi::type_impl< unsigned long > | |
Cgko::experimental::mpi::type_impl< unsigned long long > | |
Cgko::experimental::mpi::type_impl< unsigned short > | |
Cgko::syn::type_list< Types > | Type_list records several types in template |
Cgko::stop::Criterion::Updater | Serves for convenient argument passing to the Criterion's check function |
►Cgko::UseComposition< ValueType > | The UseComposition class can be used to store the composition information in LinOp |
Cgko::multigrid::EnableMultigridLevel< ValueType > | The EnableMultigridLevel gives the default implementation of MultigridLevel with composition and provides set_multigrid_level function |
Cgko::syn::value_list< T, Values > | Value_list records several values with the same type in template |
Cgko::version | This structure is used to represent versions of various Ginkgo modules |
Cgko::version_info | Ginkgo uses version numbers to label new features and to communicate backward compatibility guarantees: |
Cgko::experimental::mpi::window< ValueType > | This class wraps the MPI_Window class with RAII functionality |
Cgko::solver::workspace_traits< Solver > | Traits class providing information on the type and location of workspace vectors inside a solver |
Cgko::solver::workspace_traits< Bicg< ValueType > > | |
Cgko::solver::workspace_traits< Bicgstab< ValueType > > | |
Cgko::solver::workspace_traits< Cg< ValueType > > | |
Cgko::solver::workspace_traits< Cgs< ValueType > > | |
Cgko::solver::workspace_traits< Fcg< ValueType > > | |
Cgko::solver::workspace_traits< Gcr< ValueType > > | |
Cgko::solver::workspace_traits< gko::experimental::solver::Direct< ValueType, IndexType > > | |
Cgko::solver::workspace_traits< Gmres< ValueType > > | |
Cgko::solver::workspace_traits< Idr< ValueType > > | |
Cgko::solver::workspace_traits< Ir< ValueType > > | |
Cgko::solver::workspace_traits< LowerTrs< ValueType, IndexType > > | |
Cgko::solver::workspace_traits< Multigrid > | |
Cgko::solver::workspace_traits< UpperTrs< ValueType, IndexType > > | |
►Cgko::WritableToMatrixData< ValueType, IndexType > | A LinOp implementing this interface can write its data to a matrix_data structure |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Dense< value_type > | |
Cgko::matrix::Coo< ValueType, IndexType > | COO stores a matrix in the coordinate matrix format |
Cgko::matrix::Csr< ValueType, IndexType > | CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matrix (compressed sparse row format) |
Cgko::matrix::Ell< ValueType, IndexType > | ELL is a matrix format where stride with explicit zeros is used such that all rows have the same number of stored elements |
Cgko::matrix::Fbcsr< ValueType, IndexType > | Fixed-block compressed sparse row storage matrix format |
Cgko::matrix::Hybrid< ValueType, IndexType > | HYBRID is a matrix format which splits the matrix into ELLPACK and COO format |
Cgko::matrix::ScaledPermutation< ValueType, IndexType > | ScaledPermutation is a matrix combining a permutation with scaling factors |
Cgko::matrix::Sellp< ValueType, IndexType > | SELL-P is a matrix format similar to ELL format |
Cgko::matrix::SparsityCsr< ValueType, IndexType > | SparsityCsr is a matrix format which stores only the sparsity pattern of a sparse matrix by compressing each row of the matrix (compressed sparse row format) |
Cgko::preconditioner::Jacobi< ValueType, IndexType > | A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal blocks of the source operator |
►Cgko::WritableToMatrixData< default_precision, IndexType > | |
Cgko::matrix::Permutation< IndexType > | Permutation is a matrix format that represents a permutation matrix, i.e |
►Cgko::WritableToMatrixData< std::complex< double >, int32 > | |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
►Cgko::WritableToMatrixData< std::complex< double >, int64 > | |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
►Cgko::WritableToMatrixData< std::complex< float >, int32 > | |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
►Cgko::WritableToMatrixData< std::complex< float >, int64 > | |
Cgko::matrix::Fft | This LinOp implements a 1D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft2 | This LinOp implements a 2D Fourier matrix using the FFT algorithm |
Cgko::matrix::Fft3 | This LinOp implements a 3D Fourier matrix using the FFT algorithm |
►Cgko::WritableToMatrixData< ValueType, int32 > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |
►Cgko::WritableToMatrixData< ValueType, int64 > | |
Cgko::matrix::Dense< ValueType > | Dense is a matrix format which explicitly stores all values of the matrix |
Cgko::matrix::Diagonal< ValueType > | This class is a utility which efficiently implements the diagonal matrix (a linear operator which scales a vector row wise) |